Evidence of Ba-rich surface segregation in Ba1-xSrxTiO3 and Ba-rich surfactant in SrTiO3/ Ba1-xSrxTiO3 stacks grown by combinatorial pulsed laser deposition

The interface of a La0.7Sr0.3MnO3/SrTiO3 bilayer was modulated by introducing 3 unit cells of Ba1-xSrxTiO3 using Combinatorial Pulsed Laser Deposition. A wide range of chemical compositions was studied within the same sample, with BSTx stoichiometry variable from 0.5 to 1 along Y-axis, while the SrT...

Full description

Saved in:
Bibliographic Details
Published inEPJ Web of conferences Vol. 273; p. 01008
Main Authors Agudelo-Estrada Santiago, Barrett Nick, Lubin Christophe, Wolfman Jérôme, Negulescu Beatrice, Andreazza Pascal, Ruyter Antoine
Format Journal Article
LanguageEnglish
Published EDP Sciences 01.01.2022
Online AccessGet full text

Cover

Loading…
More Information
Summary:The interface of a La0.7Sr0.3MnO3/SrTiO3 bilayer was modulated by introducing 3 unit cells of Ba1-xSrxTiO3 using Combinatorial Pulsed Laser Deposition. A wide range of chemical compositions was studied within the same sample, with BSTx stoichiometry variable from 0.5 to 1 along Y-axis, while the SrTiO3 overlayer thickness was modified along the X direction [Fig. 1(a)]. We performed high-resolution, laboratory-based angle-resolved XPS studies of the BSTx film surface providing information on the thickness and composition of the surface and sub-surface layers. Based on the attenuation of the La 3d corelevel photoemission signal from the La0.7Sr0.3MnO3 bottom layer, the BST layer is 1.2 nm thick. XPS Ba 3d5/2 core-level spectra were acquired at positions corresponding to different nominal Ba/Sr stoichiometry. In all measurements, the Ba 3d5/2 core-level spectra can be represented by two main components, i.e. one component at higher binding energy (BE = 780.54 eV) corresponding to surface contribution and the other one at lower binding energy (BE = 778.92 eV) corresponding to sub-surface contribution (Figs. 2 and 3). Going from normal to 60° emission angle and using a 3-unit cell thick film model, the surface to sub-surface intensity ratio clearly evolves providing evidence of a Ba-rich surfactant. The surfactant effect is more significant for lower nominal Ba stoichiometry.
ISSN:2100-014X
DOI:10.1051/epjconf/202227301008