A Predator–Prey Model from a Collective Dynamics and Self-Propelled Particles Approach
The definition and description of the dynamics of a predator–prey system are some of the fundamental problems of population biology. Since 1925, several models have been introduced. Although they are highly effective, most of them neglect certain relevant criteria such as the spatial and temporal di...
Saved in:
Published in | Computer sciences & mathematics forum Vol. 7; no. 1; p. 50 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
MDPI AG
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The definition and description of the dynamics of a predator–prey system are some of the fundamental problems of population biology. Since 1925, several models have been introduced. Although they are highly effective, most of them neglect certain relevant criteria such as the spatial and temporal distribution of the studied species. We introduced these criteria by coupling two models designed initially for collective dynamics. The first is for predator mobility and is a Vicsek-type model, and the second is a Brownian particle (BP) model for prey. We observed, as occurs in the classical models, periodic cycles of the densities of predators and prey. In this case, the period of oscillations depends on the collective dynamics parameters. |
---|---|
ISSN: | 2813-0324 |
DOI: | 10.3390/IOCMA2023-14375 |