Diffusion MRI is superior to quantitative T2-FLAIR mismatch in predicting molecular subtypes of human non-enhancing gliomas

This study compared the classification performance of normalized apparent diffusion coefficient (nADC) with percentage T2-FLAIR mismatch-volume (%T2FM-volume) for differentiating between IDH-mutant astrocytoma (IDHm-A) and other glioma molecular subtypes. A total of 105 non-enhancing gliomas were st...

Full description

Saved in:
Bibliographic Details
Published inNeuroradiology
Main Authors Cho, Nicholas S, Sanvito, Francesco, Le, Viên Lam, Oshima, Sonoko, Teraishi, Ashley, Yao, Jingwen, Telesca, Donatello, Raymond, Catalina, Pope, Whitney B, Nghiemphu, Phioanh L, Lai, Albert, Salamon, Noriko, Cloughesy, Timothy F, Ellingson, Benjamin M
Format Journal Article
LanguageEnglish
Published Germany 08.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study compared the classification performance of normalized apparent diffusion coefficient (nADC) with percentage T2-FLAIR mismatch-volume (%T2FM-volume) for differentiating between IDH-mutant astrocytoma (IDHm-A) and other glioma molecular subtypes. A total of 105 non-enhancing gliomas were studied. T2-FLAIR digital subtraction maps were used to identify T2FM and T2-FLAIR non-mismatch (T2FNM) subregions within tumor volumes of interest (VOIs). Median nADC from the whole tumor, T2FM, and T2NFM subregions and %T2FM-volume were obtained. IDHm-A classification analyses using receiver-operating characteristic curves and multiple logistic regression were performed in addition to exploratory survival analyses. T2FM subregions had significantly higher nADC than T2FNM subregions within IDHm-A with ≥ 25% T2FM-volume (P < 0.0001). IDHm-A with ≥ 25% T2FM-volume demonstrated significantly higher whole tumor nADC compared to IDHm-A with < 25% T2FM-volume (P < 0.0001), and both IDHm-A subgroups demonstrated significantly higher nADC compared to IDH-mutant oligodendroglioma and IDH-wild-type gliomas (P < 0.05). For classification of IDHm-A vs. other gliomas, the area under curve (AUC) of nADC was significantly greater compared to the AUC of %T2FM-volume (P = 0.01, nADC AUC = 0.848, %T2FM-volume AUC = 0.714) along with greater sensitivity. In exploratory survival analyses within IDHm-A, %T2FM-volume was not associated with overall survival (P = 0.2), but there were non-significant trends for nADC (P = 0.07) and tumor volume (P = 0.051). T2-FLAIR subtraction maps are useful for characterizing IDHm-A imaging characteristics. nADC outperforms %T2FM-volume for classifying IDHm-A amongst non-enhancing gliomas with preserved high specificity and increased sensitivity, which may be related to inherent diffusivity differences regardless of T2FM. In line with previous findings on visual T2FM-sign, quantitative %T2FM-volume may not be prognostic.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0028-3940
1432-1920
1432-1920
DOI:10.1007/s00234-024-03475-z