MHD-Protonet: Margin-Aware Hard Example Mining for SAR Few-Shot Learning via Dual-Loss Optimization

Synthetic aperture radar (SAR) image classification under limited data conditions faces two major challenges: inter-class similarity, where distinct radar targets (e.g., tanks and armored trucks) have nearly identical scattering characteristics, and intra-class variability, caused by speckle noise,...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 18; no. 8; p. 519
Main Authors Zayani, Marii, Toumi, Abdelmalek, Khalfallah, Ali
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 16.08.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Synthetic aperture radar (SAR) image classification under limited data conditions faces two major challenges: inter-class similarity, where distinct radar targets (e.g., tanks and armored trucks) have nearly identical scattering characteristics, and intra-class variability, caused by speckle noise, pose changes, and differences in depression angle. To address these challenges, we propose MHD-ProtoNet, a meta-learning framework that extends prototypical networks with two key innovations: margin-aware hard example mining to better separate confusable classes by enforcing prototype distance margins, and dual-loss optimization to refine embeddings and improve robustness to noise-induced variations. Evaluated on the MSTAR dataset in a five-way one-shot task, MHD-ProtoNet achieves 76.80% accuracy, outperforming the Hybrid Inference Network (HIN) (74.70%), as well as standard few-shot methods such as prototypical networks (69.38%), ST-PN (72.54%), and graph-based models like ADMM-GCN (61.79%) and DGP-NET (68.60%). By explicitly mitigating inter-class ambiguity and intra-class noise, the proposed model enables robust SAR target recognition with minimal labeled data.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1999-4893
1999-4893
DOI:10.3390/a18080519