MHD-Protonet: Margin-Aware Hard Example Mining for SAR Few-Shot Learning via Dual-Loss Optimization
Synthetic aperture radar (SAR) image classification under limited data conditions faces two major challenges: inter-class similarity, where distinct radar targets (e.g., tanks and armored trucks) have nearly identical scattering characteristics, and intra-class variability, caused by speckle noise,...
Saved in:
Published in | Algorithms Vol. 18; no. 8; p. 519 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
16.08.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Synthetic aperture radar (SAR) image classification under limited data conditions faces two major challenges: inter-class similarity, where distinct radar targets (e.g., tanks and armored trucks) have nearly identical scattering characteristics, and intra-class variability, caused by speckle noise, pose changes, and differences in depression angle. To address these challenges, we propose MHD-ProtoNet, a meta-learning framework that extends prototypical networks with two key innovations: margin-aware hard example mining to better separate confusable classes by enforcing prototype distance margins, and dual-loss optimization to refine embeddings and improve robustness to noise-induced variations. Evaluated on the MSTAR dataset in a five-way one-shot task, MHD-ProtoNet achieves 76.80% accuracy, outperforming the Hybrid Inference Network (HIN) (74.70%), as well as standard few-shot methods such as prototypical networks (69.38%), ST-PN (72.54%), and graph-based models like ADMM-GCN (61.79%) and DGP-NET (68.60%). By explicitly mitigating inter-class ambiguity and intra-class noise, the proposed model enables robust SAR target recognition with minimal labeled data. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1999-4893 1999-4893 |
DOI: | 10.3390/a18080519 |