The Approximate Solution of Convolution-Type Integral Equations

A result on the convergence of an approximate factorization of $\exp \phi $, where $\phi \in L^2 ( - \infty ,\infty ) \cap L^\infty ( - \infty ,\infty )$, is obtained and then used to get an explicit approximate solution $f^{(h)} $ of the problem $f(x) = \int _0^\infty K(x - t)f(t)dt + g(x),x > 0...

Full description

Saved in:
Bibliographic Details
Published inSIAM journal on mathematical analysis Vol. 4; no. 3; pp. 536 - 555
Main Author Stenger, Frank
Format Journal Article
LanguageEnglish
Published Philadelphia Society for Industrial and Applied Mathematics 01.05.1973
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A result on the convergence of an approximate factorization of $\exp \phi $, where $\phi \in L^2 ( - \infty ,\infty ) \cap L^\infty ( - \infty ,\infty )$, is obtained and then used to get an explicit approximate solution $f^{(h)} $ of the problem $f(x) = \int _0^\infty K(x - t)f(t)dt + g(x),x > 0$, where $K$ and $g$ are in $L^2 ( - \infty ,\infty )$. The approximation , $f^{(h)} $ depends on a parameter $h$ and satisfies $\| {f - f^{(h)} } \|_2 \to 0$ as $h \to 0$. A computationally more accessible explicit approximation $f_k^{(h)} $ is also obtained, which depends on a parameter $k$, and satisfies $| {f^{(h)} (x) - f_k^{(h)} (x)} | \to 0$ as $k \to 0$ for all $x \geqq 0$. Explicit bounds are obtained, for $| {f(x) - f^{(h)} (x)} |$ and also for $| {f^{(h)} (x) - f_k^{(h)} (x^{(h)} )} |$.
ISSN:0036-1410
1095-7154
DOI:10.1137/0504047