A Spatial-Temporal Predictive Transformer Network for Level-3 Autonomous Vehicle Decision-Making

This study explores the effect of takeover time (TOT) on decision-making for Level-3 autonomous vehicles (L3-AVs). The existing research on L3-AV lacks an in-depth analysis of the mechanisms affecting TOT, ignores the importance of spatial and temporal variations in features for TOT prediction, and...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. PP; pp. 1 - 15
Main Authors Gao, Hongbo, Zheng, Xiao, Liu, Qingchao, Zhou, Lin, Huang, Chao, Hu, Mingmao, Wang, Chengbo, Li, Keqiang, Wang, Danwei, Li, Deyi
Format Journal Article
LanguageEnglish
Published IEEE 06.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study explores the effect of takeover time (TOT) on decision-making for Level-3 autonomous vehicles (L3-AVs). The existing research on L3-AV lacks an in-depth analysis of the mechanisms affecting TOT, ignores the importance of spatial and temporal variations in features for TOT prediction, and also lacks consideration of TOT in downstream trajectory planning tasks. This study proposed an exponential smoothing transformers (ETS) former model for TOT prediction, and then, the spatial-temporal predictive transformer (ST-Preformer) was employed to forecast the trajectories of surrounding vehicles, assess lane availability, and determine lane-changing probabilities. Ultimately, these evaluations contribute to the decision-making process of L3-AVs. The findings showed that the ETSformer was able to explain more than 83% of the characteristics of the TOT distribution in the TOT prediction task, effectively reducing the absolute percentage error by 0.7%, based on which the decision-making framework was able to make safe and comfortable optimal decisions. Decision-making is closely related to driving conditions and the surrounding traffic state, and TOT has a critical impact on the safety and stability of decision-making. A comprehensive understanding the impact of TOT on decision-making can help improve the safety of autonomous driving and provide guidance for improving decision-making techniques.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2024.3487838