Paper Recommendation Method based on Attention Mechanism and Graph Neural Network
At present, most recommendation technologies only consider text or citation information, which suffers from data sparseness and cold start problems. Therefore, an academic paper recommendation method based on attention mechanism and heterogeneous graph CAH is proposed. This method considers textual...
Saved in:
Published in | Journal of Electrical Systems Vol. 20; no. 2; pp. 88 - 95 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Paris
Engineering and Scientific Research Groups
18.04.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | At present, most recommendation technologies only consider text or citation information, which suffers from data sparseness and cold start problems. Therefore, an academic paper recommendation method based on attention mechanism and heterogeneous graph CAH is proposed. This method considers textual information and heterogeneous graph structure information to obtain a richer and more complete feature representation. Finally, cosine similarity is calculated to generate recommendations. The results show that compared with the content-based recommendation method, the accuracy rate, recall rate and f value of CAH method are increased by nearly 5.6%, 5.8% and 8.7%, respectively, which are significantly improved compared with the basic method. This method is expected to promote the in-depth application of recommendation systems in the field of artificial intelligence. |
---|---|
ISSN: | 1112-5209 |
DOI: | 10.52783/jes.1101 |