酸浸蚀Al-Si合金制备锂离子电池高性能多孔硅负极材料

本文首次提出利用酸浸蚀Si-AI(含A180%)合金粉末的方法制备多孔硅材料.分析表明,制得的多孔硅材料为晶体,并具有由纳米颗粒结集成的海绵状多孔结构,其粒径约20μm,比表面102.7m^2·g,.多孔硅电极按多孔硅:导电碳:粘结剂=1:1:1(bymass)涂成.在添加15%(bymass)氟化碳酸乙烯酯(FEC)的1mol·L^-1LiPF6/EC+DMC(1:1,byvolume)电解液,在100mA·g^-1电流密度充放电,多孔硅电极的首次放电比容量2072mAh·g^-1Si.经237次充放电循环后,其放电容量仍可保持在1431mAh·g^-1Si.显示了相当高的充放电稳定性.这归...

Full description

Saved in:
Bibliographic Details
Published in电化学 Vol. 20; no. 1; pp. 1 - 4
Main Author 郝世吉 李纯莉 朱凯 张平 江志裕
Format Journal Article
LanguageChinese
Published 01.02.2014
Subjects
Online AccessGet full text
ISSN1006-3471
2993-074X
DOI10.13208/j.electrochem.130426

Cover

More Information
Summary:本文首次提出利用酸浸蚀Si-AI(含A180%)合金粉末的方法制备多孔硅材料.分析表明,制得的多孔硅材料为晶体,并具有由纳米颗粒结集成的海绵状多孔结构,其粒径约20μm,比表面102.7m^2·g,.多孔硅电极按多孔硅:导电碳:粘结剂=1:1:1(bymass)涂成.在添加15%(bymass)氟化碳酸乙烯酯(FEC)的1mol·L^-1LiPF6/EC+DMC(1:1,byvolume)电解液,在100mA·g^-1电流密度充放电,多孔硅电极的首次放电比容量2072mAh·g^-1Si.经237次充放电循环后,其放电容量仍可保持在1431mAh·g^-1Si.显示了相当高的充放电稳定性.这归因于其海绵状多孔结构有足够的微空间以承受充电过程中硅的急剧膨胀.硅微粒的纳米尺寸有利于锂在Li-Si合金中的扩散.纳米硅微粒可牢固地联成一整体,不易因膨胀、收缩而粉化断裂.这种构筑多孔硅负极材料的新方法操作简便、成本低廉,有着很好的应用前景.
Bibliography:35-1172/06
Porous silicon powders prepared by etching A1-Si alloy using an acid solution was reported in the first time. The morphology and structure of as-obtained material were investigated using scanning electron microscopy (SEM) and X-ray diffi'action (XRD) method. It was found that the spongy porous silicon powders presented well crystalline structure and consisted of nano-Si particles. The particle size of porous Si powders was about 20 μm, and the specific surface area was 102.7 m^2 ·g^-1. The electrochemical properties of porous silicon powders were evaluated as an anode material for lithium ion batteries. The material proportion in the porous silicon electrode was porous Si:conducting C:binder = 1:1:1 (by mass). It was measured that in 1 tool. L^-1 LiPF6/EC:DMC = 1:1 (by volume) + 15% (by mass) FEC electrolyte, the first discharge capacity of porous silicon electrode was 2072 mAh.g^-1 Si, and the capacity of 1431 mAh.g^-1 Si was kept after 237 cycles at the charge and discharge current densities of 10
ISSN:1006-3471
2993-074X
DOI:10.13208/j.electrochem.130426