Ventricular Arrhythmia Classification Using Similarity Maps and Hierarchical Multi-Stream Deep Learning

Objective: Ventricular arrhythmias are the primary arrhythmias that cause sudden cardiac death. We address the problem of classification between ventricular tachycardia (VT), ventricular fibrillation (VF) and non-ventricular rhythms (NVR). Methods: To address the challenging problem of the discrimin...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. PP; pp. 1 - 13
Main Authors Lin, Qing, Oglic, Dino, Curtis, Michael J., Lam, Hak-Keung, Cvetkovic, Zoran
Format Journal Article
LanguageEnglish
Published IEEE 01.11.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Objective: Ventricular arrhythmias are the primary arrhythmias that cause sudden cardiac death. We address the problem of classification between ventricular tachycardia (VT), ventricular fibrillation (VF) and non-ventricular rhythms (NVR). Methods: To address the challenging problem of the discrimination between VT and VF, we develop similarity maps - a novel set of features designed to capture regularity within an ECG trace. These similarity maps are combined with features extracted through learnable Parzen band-pass filters and derivative features to discriminate between VT, VF, and NVR. To combine the benefits of these different features, we propose a hierarchical multi-stream ResNet34 architecture. Results: Our empirical results demonstrate that the similarity maps significantly improve the accuracy of distinguishing between VT and VF. Overall, the proposed approach achieves an average class sensitivity of 89.68%, and individual class sensitivities of 81.46% for VT, 89.29% for VF, and 98.28% for NVR. Conclusion: The proposed method achieves a high accuracy of ventricular arrhythmia detection and classification. Significance: Correct detection and classification of ventricular fibrillation and ventricular tachycardia are essential for effective intervention and for the development of new therapies and translational medicine.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0018-9294
1558-2531
1558-2531
DOI:10.1109/TBME.2024.3490187