A Comparative Study of Microcrystalline Cellulose Isolated from the Pod Husk and Stalk of Fluted Pumpkin

Microcrystalline celluloses (MCC) were prepared from α-celluloses obtained from fluted pumpkin stalk and pod. The substrates were subjected to treatment with 2% (w/v) NaOH, 3.5% (w/v) NaOCl and 17.5% (w/v) NaOH solutions respectively to obtain alpha celluloses. Acid hydrolysis of the alpha-cellulose...

Full description

Saved in:
Bibliographic Details
Published inChemical Science International Journal pp. 1 - 11
Main Authors Nwajiobi, C. C., Otaigbe, J. O. E., Oriji, O.
Format Journal Article
LanguageEnglish
Published 21.02.2019
Online AccessGet full text

Cover

Loading…
More Information
Summary:Microcrystalline celluloses (MCC) were prepared from α-celluloses obtained from fluted pumpkin stalk and pod. The substrates were subjected to treatment with 2% (w/v) NaOH, 3.5% (w/v) NaOCl and 17.5% (w/v) NaOH solutions respectively to obtain alpha celluloses. Acid hydrolysis of the alpha-celluloses using 2.5 N hydrochloric acid were carried out. The study evaluates and compares the physicochemical properties of microcrystalline cellulose obtained from the pod and stalk of fluted pumpkin. Composition of cellulose, hemicellulose and lignin were also determined. Results showed cellulose; hemicellulose and lignin content of the pod husk and stalk were 49%, 26%, 9% and 41%, 24%, 26%, respectively. The morphology of the hydrolyzed MCCs’ were investigated using scanning electron microscopy (SEM) and the results revealed the stalk (FS-MCC) to have an individual rod-like shaped fiber when compared with flat-shaped large aggregated forms of the pod (FP-MCC). The particles sizes were also uneven with FP-MCC (6.689 µm) having larger particle sizes than FS-MCC (5.538 µm). The high cellulose content of the pod husk shows that the applications may be extended in the production of other cellulose derivatives while the high lignin content of the stalk reveals other alternative source of producing lignin in the making of textile dyes, coating and other agricultural chemical. Pod MCC (FP-MCC) had better physicochemical properties than the stalk MCC (FS-MCC).
ISSN:2456-706X
2456-706X
DOI:10.9734/CSJI/2018/v25i430074