No effect of endoperoxide 4 or thromboxane A 2 receptor blockade on static mechanoreflex activation in rats with heart failure

What is the central question of this study? Do endoperoxide 4 and thromboxane A receptors, which are receptors for cyclooxygenase products of arachidonic metabolism, on thin fibre muscle afferents play a role in the chronic mechanoreflex sensitization present in rats with heart failure with reduced...

Full description

Saved in:
Bibliographic Details
Published inExperimental physiology Vol. 105; no. 11; pp. 1840 - 1854
Main Authors Butenas, Alec L E, Rollins, Korynne S, Matney, Jacob E, Williams, Auni C, Kleweno, Talyn E, Parr, Shannon K, Hammond, Stephen T, Ade, Carl J, Hageman, Karen S, Musch, Timothy I, Copp, Steven W
Format Journal Article
LanguageEnglish
Published England 01.11.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:What is the central question of this study? Do endoperoxide 4 and thromboxane A receptors, which are receptors for cyclooxygenase products of arachidonic metabolism, on thin fibre muscle afferents play a role in the chronic mechanoreflex sensitization present in rats with heart failure with reduced ejection fraction (HF-rEF)? What is the main finding and its importance? The data do not support a role for endoperoxide 4 receptors or thromboxane A receptors in the chronic mechanoreflex sensitization in HF-rEF rats. We investigated the role of cyclooxygenase metabolite-associated endoperoxide 4 receptors (EP4-R) and thromboxane A receptors (TxA -R) on thin fibre muscle afferents in the chronic mechanoreflex sensitization in rats with myocardial infarction-induced heart failure with reduced ejection fraction (HF-rEF). We hypothesized that injection of either the EP4-R antagonist L-161,982 (1 µg) or the TxA -R antagonist daltroban (80 µg) into the arterial supply of the hindlimb would reduce the increase in blood pressure and renal sympathetic nerve activity (RSNA) evoked in response to 30 s of static hindlimb skeletal muscle stretch (a model of isolated mechanoreflex activation) in decerebrate, unanaesthetized HF-rEF rats but not sham-operated control rats (SHAM). Ejection fraction was significantly reduced in HF-rEF (45 ± 11%) compared to SHAM (83 ± 6%; P < 0.01) rats. In SHAM and HF-rEF rats, we found that the EP4-R antagonist had no effect on the peak increase in mean arterial pressure (peak ΔMAP SHAM n = 6, pre: 15 ± 7, post: 15 ± 9, P = 0.99; HF-rEF n = 9, pre: 30 ± 11, post: 32 ± 15 mmHg, P = 0.84) or peak increase in RSNA (peak ΔRSNA SHAM pre: 33 ± 14, post: 47 ± 31%, P = 0.94; HF-rEF, pre: 109 ± 47, post: 139 ± 150%, P = 0.76) response to stretch. Similarly, in SHAM and HF-rEF rats, we found that the TxA -R antagonist had no effect on the peak ΔMAP (SHAM n = 7, pre: 13 ± 7, post: 19 ± 14, P = 0.15; HF-rEF n = 14, pre: 24 ± 13, post: 21 ± 13 mmHg, P = 0.47) or peak ΔRSNA (SHAM pre: 52 ± 43, post: 57 ± 67%, P = 0.94; HF-rEF, pre: 108 ± 93, post: 88 ± 72%, P = 0.30) response to stretch. The data do not support a role for EP4-Rs or TxA -Rs in the chronic mechanoreflex sensitization in HF-rEF.
ISSN:0958-0670
1469-445X
DOI:10.1113/EP088835