A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice

Public health measures have successfully identified and contained outbreaks of the severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV), but concerns remain over the possibility of future recurrences. Finding a vaccine for this virus therefore remains a high priority. Here, we show that a...

Full description

Saved in:
Bibliographic Details
Published inNature Vol. 428; no. 6982; pp. 561 - 564
Main Authors Nabel, Gary J, Yang, Zhi-yong, Kong, Wing-pui, Huang, Yue, Roberts, Anjeanette, Murphy, Brian R, Subbarao, Kanta
Format Journal Article
LanguageEnglish
Published London Nature Publishing 01.04.2004
Nature Publishing Group
Nature Publishing Group UK
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Public health measures have successfully identified and contained outbreaks of the severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV), but concerns remain over the possibility of future recurrences. Finding a vaccine for this virus therefore remains a high priority. Here, we show that a DNA vaccine encoding the spike (S) glycoprotein of the SARS-CoV induces T cell and neutralizing antibody responses, as well as protective immunity, in a mouse model. Alternative forms of S were analysed by DNA immunization. These expression vectors induced robust immune responses mediated by CD4 and CD8 cells, as well as significant antibody titres, measured by enzyme-linked immunosorbent assay. Moreover, antibody responses in mice vaccinated with an expression vector encoding a form of S that includes its transmembrane domain elicited neutralizing antibodies. Viral replication was reduced by more than six orders of magnitude in the lungs of mice vaccinated with these S plasmid DNA expression vectors, and protection was mediated by a humoral but not a T-cell-dependent immune mechanism. Gene-based vaccination for the SARS-CoV elicits effective immune responses that generate protective immunity in an animal model.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0028-0836
1476-4687
DOI:10.1038/nature02463