Anchoring Frustrated Lewis Pair Active Sites on Copper Nanoclusters for Regioselective Hydrogenation

In recent years, the concept of Frustrated Lewis Pairs (FLPs), which consist of a combination of Lewis acid (LA) and Lewis base (LB) active sites arranged in a suitable geometric configuration, has been widely utilized in homogeneous catalytic reactions. This concept has also been extended to solid...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American Chemical Society
Main Authors Li, Simin, Wu, Qingyuan, You, Xuexin, Ren, Xiaofei, Du, Peilin, Li, Fengyu, Zheng, Nanfeng, Shen, Hui
Format Journal Article
LanguageEnglish
Published United States 01.10.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:In recent years, the concept of Frustrated Lewis Pairs (FLPs), which consist of a combination of Lewis acid (LA) and Lewis base (LB) active sites arranged in a suitable geometric configuration, has been widely utilized in homogeneous catalytic reactions. This concept has also been extended to solid supports such as zeolites, metal oxide surfaces, and metal/covalent organic frameworks, resulting in a diverse range of heterogeneous FLP catalysts that have demonstrated notable efficiency and recyclability in activating small molecules. This study presents the successful immobilization of FLP active sites onto the surface of ligand-stabilized copper nanoclusters with atomic precision, leading to the development of copper nanocluster FLP catalysts characterized by high reactivity, stability, and selectivity. Specifically, thiol ligands containing 2-methoxyl groups were strategically designed to stabilize the surface of [Cu S (RS) (PPh ) ] (where RSH = 2-methoxybenzenethiol), facilitating the formation of FLPs between the surface copper atoms (LA) and ligand oxygen atoms (LB). Experimental and theoretical investigations have demonstrated that these FLPs on the cluster surface can efficiently activate H through a heterolytic pathway, resulting in superior catalytic performance in the hydrogenation of alkenes under mild conditions. Notably, the intricate yet precise surface coordination structures of the cluster, reminiscent of enzyme catalysts, enable the hydrogenation process to proceed with nearly 100% selectivity. This research offers valuable insights into the design of FLP catalysts with enhanced activity and selectivity by leveraging surface/interface coordination chemistry of ligand-stabilized atomically precise metal nanoclusters.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.4c10251