Predicting Lead and Nickel Contamination in Soil using Spectroradiometer

In the geosciences, visible–near–short-wave infrared reflectance spectroscopy seems to have the capability to become a helpful technique for soil classification, mapping, and remote confirmation of soil characteristics and mineral composition. Focus on improving the spatial resolution of soil maps i...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of recent technology and engineering Vol. 10; no. 1; pp. 121 - 125
Main Authors Pawar, Bharati S., Deshmukh, Ratnadeep R.
Format Journal Article
LanguageEnglish
Published 30.05.2021
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the geosciences, visible–near–short-wave infrared reflectance spectroscopy seems to have the capability to become a helpful technique for soil classification, mapping, and remote confirmation of soil characteristics and mineral composition. Focus on improving the spatial resolution of soil maps in order to better deal with localized problems like soil pollution. A variety of physio-chemical properties were measured in long-term spiked soils with a range of lead and nickel concentrations and also their spectral reflectance between 400 and 2500 nm at three different locations in the agricultural region of MIDC, Aurangabad, Maharashtra, India. Principle component analysis (PCA) used for feature extraction of soil were partial least squares regression (PLSR) method is used for classification. To measured amount of lead and nickel in soil sample, thirteen features of soil samples are calculated. The main aim of this study was to use statistical methods to calculate the lead and nickel concentrations in soil, as well as to assess the efficiency of VNIR-SWIR reflectance spectroscopy for heavy metal estimation in soil using the ASD FieldSpec4 Spectroradiometer. R2 = 0.96 provides the best precision for lead content and R2 = 0.95 for nickel content in soil, according to the findings. Lead and nickel have RMSEs of 3.396 and 2.680, respectively. The outcomes show that the proposed method is capable of accurately forecasting lead and nickel concentrations.
ISSN:2277-3878
2277-3878
DOI:10.35940/ijrte.A5758.0510121