Experimental Comparison of Anomalous Reflectors Implemented With Local and Nonlocal Design Approaches
Developing intelligent radio environments with the ability to engineer and optimize propagation channels has been made possible by metasurfaces that perform anomalous reflection and control the direction of wave reflection at will. Several design methods for creation of anomalous reflectors have bee...
Saved in:
Published in | IEEE transactions on antennas and propagation Vol. 72; no. 10; pp. 7783 - 7792 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.10.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Developing intelligent radio environments with the ability to engineer and optimize propagation channels has been made possible by metasurfaces that perform anomalous reflection and control the direction of wave reflection at will. Several design methods for creation of anomalous reflectors have been developed, from the simplest locally periodic designs of individual unit cells to advanced global optimizations. In this study, we design, fabricate, and experimentally characterize anomalous reflectors that have the same size and perform the same function but are designed using two different, most commonly used methods. Experimental characterization of the reflector performance over a broad frequency range and for a variety of illumination angles allows comparison of the two methods and helps to select the most suitable design approach for specific application requirements. |
---|---|
ISSN: | 0018-926X 1558-2221 |
DOI: | 10.1109/TAP.2024.3451997 |