Modeling and Optimal Control of Liquidity Risk Contagion in the Banking System with Delayed Status and Control Variables

The application of contagion risk spread modeling within the banking sector is a relatively recent development, emerging as a response to the persistent threat of liquidity risk that has affected financial institutions globally. Liquidity risk is recognized as one of the most destructive financial t...

Full description

Saved in:
Bibliographic Details
Published inAppliedMath Vol. 5; no. 3; p. 107
Main Authors Mourad, Hamza, Fahim, Said, Lahby, Mohamed
Format Journal Article
LanguageEnglish
Published 15.08.2025
Online AccessGet full text

Cover

Loading…
More Information
Summary:The application of contagion risk spread modeling within the banking sector is a relatively recent development, emerging as a response to the persistent threat of liquidity risk that has affected financial institutions globally. Liquidity risk is recognized as one of the most destructive financial threats to banks, capable of causing severe and irreparable damage if overlooked or underestimated. This study aims to identify the most effective control strategy for managing financial contagion using a Susceptible–Infected–Recovered (SIR) epidemic model, incorporating time delays in both state and control variables. The proposed strategy seeks to maximize the number of resilient (vulnerable) banks while minimizing the number of infected institutions at risk of bankruptcy. Our goal is to formulate intervention policies that can curtail the propagation of financial contagion and mitigate associated systemic risks. Our model remains a simplification of reality. It does not account for strategic interactions between banks (e.g., panic reactions, network coordination), nor for adaptive regulatory mechanisms. The integration of these aspects will be the subject of future work. We establish the existence of an optimal control strategy and apply Pontryagin’s Maximum Principle to characterize and analyze the control dynamics. To numerically solve the control system, we employ a discretization approach based on forward and backward finite difference approximations. Despite the model’s simplifications, it captures key dynamics relevant to major European banks. Simulations performed using Python 3.12 yield significant results across three distinct scenarios. Notably, in the most severe case (α3=1.0), the optimal control strategy reduces bankruptcies from 25% to nearly 0% in Spain, and from 12.5% to 0% in France and Germany, demonstrating the effectiveness of timely intervention in containing financial contagion.
ISSN:2673-9909
2673-9909
DOI:10.3390/appliedmath5030107