RNA methylation by the MIS complex regulates a cell fate decision in yeast

For the yeast Saccharomyces cerevisiae, nutrient limitation is a key developmental signal causing diploid cells to switch from yeast-form budding to either foraging pseudohyphal (PH) growth or meiosis and sporulation. Prolonged starvation leads to lineage restriction, such that cells exiting meiotic...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 8; no. 6; p. e1002732
Main Authors Agarwala, Sudeep D, Blitzblau, Hannah G, Hochwagen, Andreas, Fink, Gerald R
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.06.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:For the yeast Saccharomyces cerevisiae, nutrient limitation is a key developmental signal causing diploid cells to switch from yeast-form budding to either foraging pseudohyphal (PH) growth or meiosis and sporulation. Prolonged starvation leads to lineage restriction, such that cells exiting meiotic prophase are committed to complete sporulation even if nutrients are restored. Here, we have identified an earlier commitment point in the starvation program. After this point, cells, returned to nutrient-rich medium, entered a form of synchronous PH development that was morphologically and genetically indistinguishable from starvation-induced PH growth. We show that lineage restriction during this time was, in part, dependent on the mRNA methyltransferase activity of Ime4, which played separable roles in meiotic induction and suppression of the PH program. Normal levels of meiotic mRNA methylation required the catalytic domain of Ime4, as well as two meiotic proteins, Mum2 and Slz1, which interacted and co-immunoprecipitated with Ime4. This MIS complex (Mum2, Ime4, and Slz1) functioned in both starvation pathways. Together, our results support the notion that the yeast starvation response is an extended process that progressively restricts cell fate and reveal a broad role of post-transcriptional RNA methylation in these decisions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Conceived and designed the experiments: SDA HGB AH GRF. Performed the experiments: SDA. Analyzed the data: SDA HGB AH GRF. Contributed reagents/materials/analysis tools: AH GRF. Wrote the paper: SDA HGB AH GRF.
Current address: Department of Biology, New York University, New York, New York, United States of America
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1002732