Morphological Characteristics and Nutrient Content of Fine Roots of 2-Year-Old and 3-Year-Old Eucalyptus grandis Plantation

[ Objective] This study aimed to explore the morphological characteristics and nutrient content of f'me roots of 2-year-old and 3-year-old Euca/yptus grand/s plantation and investigate the correlation. [ Method] Fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation were collected as...

Full description

Saved in:
Bibliographic Details
Published inAgricultural biotechnology (Pawtucket, R.I.) Vol. 1; no. 6; pp. 9 - 14
Main Authors Duan, Xiaoyu, Li, Xianwei, Zhou, Liuling, Wang, Weishuang, Chen, Hui
Format Journal Article
LanguageEnglish
Published Cranston Wu Chu (USA-China) Science and Culture Media Corporation 01.12.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[ Objective] This study aimed to explore the morphological characteristics and nutrient content of f'me roots of 2-year-old and 3-year-old Euca/yptus grand/s plantation and investigate the correlation. [ Method] Fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation were collected as experimental materials, to determine the root diameter (D), root length (L), specific root length (SRL) and contents of major nutrient elements N, P, K, Ca, Mg and C of fine roots (level 1 -5), study the morphological characteristics and major nutrient element content and investigate the correlation. [ Result] The results showed that morphological differences of fine roots ( level 1 - 5 ) of Eucalyptus grandis plantation were great with the increase of root order, to be specific, D and L increased and SRL decreased with the increasing root order; SRL, L and D of 3-year-old Eucalyptus grauclis plantation were greater than those of 2-year-old Euca/yptus grand/s plantation. Contents of N, Ca, Mg and C of fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation showed consistent orders with the increase of root order: N and Mg contents were reduced, while Ca and C contents were enhanced; P and K contents varied with different forest ages; both 2-year-old and 3-year- old Eucalyptus grandis showed an order of C 〉 K 〉 Ca (Mg) 〉 N. Major nutrient element content and morphological characteristics of Eucalyptus grand/s fine roots (level 1 -5 ) were extremely significantly correlated (P 〈0.01 ), SRL, L and D could be adopted as reference indices to evaluate nutrient status of Eucalyptus grand/s. Required nutrients and fine root morphology of Eucalyptus grandis plantation changed with the increase of forest age, and the nutrient cycling and energy flow patterns also changed; major nutrient dements in fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation transferred in a different order from the growth order, therefore N fertilizer could be applied to improve the growth of fine roots. [ Condusion] This study laid the foundation for understanding the fine root morphology and nutrient variation pattern of Eucalyptus grandis plantation and enriching the response and adaptation mechanism theory of roots to environment, pos- sessing important reference significance for the sustainable development of Eucalyptus grand/s plantation.
Bibliography:[ Objective] This study aimed to explore the morphological characteristics and nutrient content of f'me roots of 2-year-old and 3-year-old Euca/yptus grand/s plantation and investigate the correlation. [ Method] Fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation were collected as experimental materials, to determine the root diameter (D), root length (L), specific root length (SRL) and contents of major nutrient elements N, P, K, Ca, Mg and C of fine roots (level 1 -5), study the morphological characteristics and major nutrient element content and investigate the correlation. [ Result] The results showed that morphological differences of fine roots ( level 1 - 5 ) of Eucalyptus grandis plantation were great with the increase of root order, to be specific, D and L increased and SRL decreased with the increasing root order; SRL, L and D of 3-year-old Eucalyptus grauclis plantation were greater than those of 2-year-old Euca/yptus grand/s plantation. Contents of N, Ca, Mg and C of fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation showed consistent orders with the increase of root order: N and Mg contents were reduced, while Ca and C contents were enhanced; P and K contents varied with different forest ages; both 2-year-old and 3-year- old Eucalyptus grandis showed an order of C 〉 K 〉 Ca (Mg) 〉 N. Major nutrient element content and morphological characteristics of Eucalyptus grand/s fine roots (level 1 -5 ) were extremely significantly correlated (P 〈0.01 ), SRL, L and D could be adopted as reference indices to evaluate nutrient status of Eucalyptus grand/s. Required nutrients and fine root morphology of Eucalyptus grandis plantation changed with the increase of forest age, and the nutrient cycling and energy flow patterns also changed; major nutrient dements in fine roots of 2-year-old and 3-year-old Eucalyptus grandis plantation transferred in a different order from the growth order, therefore N fertilizer could be applied to improve the growth of fine roots. [ Condusion] This study laid the foundation for understanding the fine root morphology and nutrient variation pattern of Eucalyptus grandis plantation and enriching the response and adaptation mechanism theory of roots to environment, pos- sessing important reference significance for the sustainable development of Eucalyptus grand/s plantation.
Eucalyptus grandis; Fine root; Root order; Nutrient elements; Morphological characteristics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2164-4993