High-resolution mapping of meiotic crossovers and non-crossovers in yeast

Meiotic recombination has a central role in the evolution of sexually reproducing organisms. The two recombination outcomes, crossover and non-crossover, increase genetic diversity, but have the potential to homogenize alleles by gene conversion. Whereas crossover rates vary considerably across the...

Full description

Saved in:
Bibliographic Details
Published inNature Vol. 454; no. 7203; pp. 479 - 485
Main Authors Mancera, Eugenio, Bourgon, Richard, Brozzi, Alessandro, Huber, Wolfgang, Steinmetz, Lars M
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 24.07.2008
Nature Publishing
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Meiotic recombination has a central role in the evolution of sexually reproducing organisms. The two recombination outcomes, crossover and non-crossover, increase genetic diversity, but have the potential to homogenize alleles by gene conversion. Whereas crossover rates vary considerably across the genome, non-crossovers and gene conversions have only been identified in a handful of loci. To examine recombination genome wide and at high spatial resolution, we generated maps of crossovers, crossover-associated gene conversion and non-crossover gene conversion using dense genetic marker data collected from all four products of fifty-six yeast (Saccharomyces cerevisiae) meioses. Our maps reveal differences in the distributions of crossovers and non-crossovers, showing more regions where either crossovers or non-crossovers are favoured than expected by chance. Furthermore, we detect evidence for interference between crossovers and non-crossovers, a phenomenon previously only known to occur between crossovers. Up to 1% of the genome of each meiotic product is subject to gene conversion in a single meiosis, with detectable bias towards GC nucleotides. To our knowledge the maps represent the first high-resolution, genome-wide characterization of the multiple outcomes of recombination in any organism. In addition, because non-crossover hotspots create holes of reduced linkage within haplotype blocks, our results stress the need to incorporate non-crossovers into genetic linkage analysis.
Bibliography:http://dx.doi.org/10.1038/nature07135
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0028-0836
1476-4687
1476-4687
1476-4679
DOI:10.1038/nature07135