THz time‐domain spectroscopy and IR spectroscopy on MoS 2

In the increasing research field of 2D materials such as graphene, molybdenum disulfide MoS 2 has attracted great interest due to the existence of a direct bandgap in monolayer MoS 2 , which gives the possibility of achieving MoS 2 field‐effect transistors or optoelectronic devices. We analyzed by T...

Full description

Saved in:
Bibliographic Details
Published inphysica status solidi (b) Vol. 253; no. 12; pp. 2499 - 2504
Main Authors Arcos, David, Gabriel, Daniel, Dumcenco, Dumitru, Kis, Andras, Ferrer‐Anglada, Núria
Format Journal Article
LanguageEnglish
Published 01.12.2016
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the increasing research field of 2D materials such as graphene, molybdenum disulfide MoS 2 has attracted great interest due to the existence of a direct bandgap in monolayer MoS 2 , which gives the possibility of achieving MoS 2 field‐effect transistors or optoelectronic devices. We analyzed by THz time‐domain spectroscopy (THz‐TDS) up to 2 THz and infrared (IR) spectroscopy, CVD‐obtained MoS 2 using either S or H 2 S gas as a sulfur precursor, grown on a sapphire substrate. From THz‐TDS we obtained the transmittance, conductivity, and attenuation. From IR spectroscopy on the same samples, we deduced the transmittance in the IR frequency range. We observed the coherence of both spectroscopic methods. The advantage of the THz‐TDS method is that we can get significant parameters related to the sample quality without the need for depositing any electrical contact or sample preparation. Our results show that at high frequencies MoS 2 is even better than graphene as a material for optoelectronic devices.
ISSN:0370-1972
1521-3951
DOI:10.1002/pssb.201600281