Phosphatase-dead myotubularin ameliorates X-linked centronuclear myopathy phenotypes in mice

Myotubularin MTM1 is a phosphoinositide (PPIn) 3-phosphatase mutated in X-linked centronuclear myopathy (XLCNM; myotubular myopathy). We investigated the involvement of MTM1 enzymatic activity on XLCNM phenotypes. Exogenous expression of human MTM1 in yeast resulted in vacuolar enlargement, as a con...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 8; no. 10; p. e1002965
Main Authors Amoasii, Leonela, Bertazzi, Dimitri L, Tronchère, Hélène, Hnia, Karim, Chicanne, Gaëtan, Rinaldi, Bruno, Cowling, Belinda S, Ferry, Arnaud, Klaholz, Bruno, Payrastre, Bernard, Laporte, Jocelyn, Friant, Sylvie
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.10.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Myotubularin MTM1 is a phosphoinositide (PPIn) 3-phosphatase mutated in X-linked centronuclear myopathy (XLCNM; myotubular myopathy). We investigated the involvement of MTM1 enzymatic activity on XLCNM phenotypes. Exogenous expression of human MTM1 in yeast resulted in vacuolar enlargement, as a consequence of its phosphatase activity. Expression of mutants from patients with different clinical progression and determination of PtdIns3P and PtdIns5P cellular levels confirmed the link between vacuolar morphology and MTM1 phosphatase activity, and showed that some disease mutants retain phosphatase activity. Viral gene transfer of phosphatase-dead myotubularin mutants (MTM1(C375S) and MTM1(S376N)) significantly improved most histological signs of XLCNM displayed by a Mtm1-null mouse, at similar levels as wild-type MTM1. Moreover, the MTM1(C375S) mutant improved muscle performance and restored the localization of nuclei, triad alignment, and the desmin intermediate filament network, while it did not normalize PtdIns3P levels, supporting phosphatase-independent roles of MTM1 in maintaining normal muscle performance and organelle positioning in skeletal muscle. Among the different XLCNM signs investigated, we identified only triad shape and fiber size distribution as being partially dependent on MTM1 phosphatase activity. In conclusion, this work uncovers MTM1 roles in the structural organization of muscle fibers that are independent of its enzymatic activity. This underlines that removal of enzymes should be used with care to conclude on the physiological importance of their activity.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors were joint senior authors on this work.
Conceived and designed the experiments: SF JL BP KH HT BSC LA DLB. Performed the experiments: LA DLB HT KH GC BR AF BK SF. Analyzed the data: LA DLB KH HT AF BK BP JL SF. Contributed reagents/materials/analysis tools: LA DLB KH HT BR GC BSC BK AF. Wrote the paper: LA DLB JL SF.
The authors have declared that no competing interests exist.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1002965