基于RGB-D相机的玉米茎粗测量方法

为实现田间玉米茎粗的快速测量,提出了一种基于RGB-D(RGB-Depth)相机的玉米茎粗参数提取方法.以小喇叭口期玉米为观测对象,利用RGB-D相机获取田间玉米的彩色图像和深度图像.首先,根据玉米与背景的颜色差异,对图像进行自动阈值分割,提取图像中感兴趣区域内的信息;利用形态学'开'操作剔除图像中的噪声,得到玉米茎杆的主干.其次,对茎杆主干进行骨架化操作,检测骨架的交叉点和末端点,确定茎杆的待测量部位.然后,对该部位的点云数据进行去噪、聚类、椭圆拟合操作,得到椭圆的长轴和短轴,获得玉米的茎粗.对20株玉米进行测试,结果表明:茎粗长轴的平均测量误差为3.31...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. z1; pp. 170 - 176
Main Author 仇瑞承 张漫 魏爽 李世超 李民赞 刘刚
Format Journal Article
LanguageChinese
Published 中国农业大学现代精细农业系统集成研究教育部重点实验室,北京,100083%农业部农业信息获取技术重点实验室,北京,100083 2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:为实现田间玉米茎粗的快速测量,提出了一种基于RGB-D(RGB-Depth)相机的玉米茎粗参数提取方法.以小喇叭口期玉米为观测对象,利用RGB-D相机获取田间玉米的彩色图像和深度图像.首先,根据玉米与背景的颜色差异,对图像进行自动阈值分割,提取图像中感兴趣区域内的信息;利用形态学'开'操作剔除图像中的噪声,得到玉米茎杆的主干.其次,对茎杆主干进行骨架化操作,检测骨架的交叉点和末端点,确定茎杆的待测量部位.然后,对该部位的点云数据进行去噪、聚类、椭圆拟合操作,得到椭圆的长轴和短轴,获得玉米的茎粗.对20株玉米进行测试,结果表明:茎粗长轴的平均测量误差为3.31 mm,标准差为3.01 mm,平均测量相对误差为10.27%,茎粗短轴的平均测量误差为3.33 mm,标准差为2.39 mm,平均测量相对误差为12.71%.该研究可为作物表型参数的快速获取提供参考.
Bibliography:11-2047/S
Stem diameters of maize are important phenotype parameters and can characterize the crop growth and lodging resistance, drawing more attentions from breeders. Traditional measurement about stem diameters is usually manual measurement, which is timeconsuming, laborious, and subject to human error. In order to rapidly measure stem diameters of maize in field, a method based on RGB-D (red, green, blue - depth) camera was proposed in this paper to extract stem diameters of maize. The color images and depth images of the maize plants at the small bell stage were captured by a RGB-D camera in field. First, maize stem was extracted by processing the color image. It was hard to recognize maize just according to the color differences in red, green and blue component between maize and background due to the illumination variations. To solve the problem, the component that represented the difference between green signals and illumination brightness was calculated and applied to segment maize with Otsu algorithm,
ISSN:1002-6819
DOI:10.11975/j.issn.1002-6819.2017.z1.026