Adaptation of hepatitis C virus to mouse CD81 permits infection of mouse cells in the absence of human entry factors

Hepatitis C virus (HCV) naturally infects only humans and chimpanzees. The determinants responsible for this narrow species tropism are not well defined. Virus cell entry involves human scavenger receptor class B type I (SR-BI), CD81, claudin-1 and occludin. Among these, at least CD81 and occludin a...

Full description

Saved in:
Bibliographic Details
Published inPLoS pathogens Vol. 6; no. 7; p. e1000978
Main Authors Bitzegeio, Julia, Bankwitz, Dorothea, Hueging, Kathrin, Haid, Sibylle, Brohm, Christiane, Zeisel, Mirjam B, Herrmann, Eva, Iken, Marcus, Ott, Michael, Baumert, Thomas F, Pietschmann, Thomas
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.07.2010
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hepatitis C virus (HCV) naturally infects only humans and chimpanzees. The determinants responsible for this narrow species tropism are not well defined. Virus cell entry involves human scavenger receptor class B type I (SR-BI), CD81, claudin-1 and occludin. Among these, at least CD81 and occludin are utilized in a highly species-specific fashion, thus contributing to the narrow host range of HCV. We adapted HCV to mouse CD81 and identified three envelope glycoprotein mutations which together enhance infection of cells with mouse or other rodent receptors approximately 100-fold. These mutations enhanced interaction with human CD81 and increased exposure of the binding site for CD81 on the surface of virus particles. These changes were accompanied by augmented susceptibility of adapted HCV to neutralization by E2-specific antibodies indicative of major conformational changes of virus-resident E1/E2-complexes. Neutralization with CD81, SR-BI- and claudin-1-specific antibodies and knock down of occludin expression by siRNAs indicate that the adapted virus remains dependent on these host factors but apparently utilizes CD81, SR-BI and occludin with increased efficiency. Importantly, adapted E1/E2 complexes mediate HCV cell entry into mouse cells in the absence of human entry factors. These results further our knowledge of HCV receptor interactions and indicate that three glycoprotein mutations are sufficient to overcome the species-specific restriction of HCV cell entry into mouse cells. Moreover, these findings should contribute to the development of an immunocompetent small animal model fully permissive to HCV.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
Conceived and designed the experiments: JB TP. Performed the experiments: JB DB KH SH CB MBZ MI. Analyzed the data: JB DB KH SH CB MBZ EH TFB TP. Contributed reagents/materials/analysis tools: MBZ MI MO TFB. Wrote the paper: JB TP.
ISSN:1553-7374
1553-7366
1553-7374
DOI:10.1371/journal.ppat.1000978