Some Elementary Combinatory Properties and Fibonacci Numbers

In general, in the midst of History of Mathematics textbooks, we are faced with a discussion due to curiosity about the emblematic Fibonacci Sequence, whose popularization occurred with the proposition of the reproduction model of immortal rabbits. On the other hand, in the comparison of the multipl...

Full description

Saved in:
Bibliographic Details
Published inJournal of Instructional Mathematics Vol. 4; no. 1; pp. 52 - 65
Main Authors Alves, Francisco Régis Vieira, Sousa, Renata Teófilo de
Format Journal Article
LanguageEnglish
Published 26.05.2023
Online AccessGet full text

Cover

Loading…
More Information
Summary:In general, in the midst of History of Mathematics textbooks, we are faced with a discussion due to curiosity about the emblematic Fibonacci Sequence, whose popularization occurred with the proposition of the reproduction model of immortal rabbits. On the other hand, in the comparison of the multiple approaches and discussions of certain subjects in Elementary Mathematics, in the present work, we highlight combinatorial interpretations that, with the support of a characteristic and fundamental reasoning for the mathematics teacher, can be generalized and formalize some eminently intuitive components. In particular, this work deals with properties derived from the notion of tiling and decomposition of an integer that, depending on the board, will correspond to the numbers of the Fibonacci Sequence. We bring a theoretical discussion supported by great names that research in this area.
ISSN:2722-2179
2722-2179
DOI:10.37640/jim.v4i1.1756