An evolutionarily conserved synthetic lethal interaction network identifies FEN1 as a broad-spectrum target for anticancer therapeutic development

Harnessing genetic differences between cancerous and noncancerous cells offers a strategy for the development of new therapies. Extrapolating from yeast genetic interaction data, we used cultured human cells and siRNA to construct and evaluate a synthetic lethal interaction network comprised of chro...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 9; no. 1; p. e1003254
Main Authors van Pel, Derek M, Barrett, Irene J, Shimizu, Yoko, Sajesh, Babu V, Guppy, Brent J, Pfeifer, Tom, McManus, Kirk J, Hieter, Philip
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.01.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Harnessing genetic differences between cancerous and noncancerous cells offers a strategy for the development of new therapies. Extrapolating from yeast genetic interaction data, we used cultured human cells and siRNA to construct and evaluate a synthetic lethal interaction network comprised of chromosome instability (CIN) genes that are frequently mutated in colorectal cancer. A small number of genes in this network were found to have synthetic lethal interactions with a large number of cancer CIN genes; these genes are thus attractive targets for anticancer therapeutic development. The protein product of one highly connected gene, the flap endonuclease FEN1, was used as a target for small-molecule inhibitor screening using a newly developed fluorescence-based assay for enzyme activity. Thirteen initial hits identified through in vitro biochemical screening were tested in cells, and it was found that two compounds could selectively inhibit the proliferation of cultured cancer cells carrying inactivating mutations in CDC4, a gene frequently mutated in a variety of cancers. Inhibition of flap endonuclease activity was also found to recapitulate a genetic interaction between FEN1 and MRE11A, another gene frequently mutated in colorectal cancers, and to lead to increased endogenous DNA damage. These chemical-genetic interactions in mammalian cells validate evolutionarily conserved synthetic lethal interactions and demonstrate that a cross-species candidate gene approach is successful in identifying small-molecule inhibitors that prove effective in a cell-based cancer model.
Bibliography:Conceived and designed the experiments: DMvP IJB YS BVS BJG TP KJM PH. Performed the experiments: DMvP IJB YS BVS BJG KJM. Analyzed the data: DMvP IJB YS BVS BJG TP KJM PH. Contributed reagents/materials/analysis tools: DMvP TP KJM PH. Wrote the paper: DMvP IJB BVS BJG TP KJM PH.
The authors have declared that no competing interests exist.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1003254