Does migration of hybrids contribute to post-zygotic isolation in flycatchers?

In the face of hybridization, species integrity can only be maintained through post-zygotic isolating barriers (PIBs). PIBs need not only be intrinsic (i.e. hybrid inviability and sterility caused by developmental incompatibilities), but also can be extrinsic due to the hybrid's intermediate ph...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the Royal Society. B, Biological sciences Vol. 274; no. 1610; pp. 707 - 712
Main Authors Veen, Thor, Svedin, Nina, Forsman, Jukka T, Hjernquist, Mårten B, Qvarnström, Anna, Hjernquist, Katherine A. Thuman, Träff, Johan, Klaassen, Marcel
Format Journal Article
LanguageEnglish
Published London The Royal Society 07.03.2007
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In the face of hybridization, species integrity can only be maintained through post-zygotic isolating barriers (PIBs). PIBs need not only be intrinsic (i.e. hybrid inviability and sterility caused by developmental incompatibilities), but also can be extrinsic due to the hybrid's intermediate phenotype falling between the parental niches. For example, in migratory species, hybrid fitness might be reduced as a result of intermediate migration pathways and reaching suboptimal wintering grounds. Here, we test this idea by comparing the juvenile to adult survival probabilities as well as the wintering grounds of pied flycatchers (Ficedula hypoleuca), collared flycatchers (Ficedula albicollis) and their hybrids using stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) in feathers developed at the wintering site. Our result supports earlier observations of largely segregated wintering grounds of the two parental species. The isotope signature of hybrids clustered with that of pied flycatchers. We argue that this pattern can explain the high annual survival of hybrid flycatchers. Hence, dominant expression of the traits of one of the parental species in hybrids may substantially reduce the ecological costs of hybridization.
Bibliography:Both authors contributed equally to the article.
href:707.pdf
istex:AFE7B4F0C008455BA0BD85A189D281287B2E16EC
ark:/67375/V84-2TG7847M-P
ArticleID:rspb20060058
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0962-8452
1471-2954
1471-2954
DOI:10.1098/rspb.2006.0058