Explainability of three-dimensional convolutional neural networks for functional magnetic resonance imaging of Alzheimer’s disease classification based on gradient-weighted class activation mapping

Currently, numerous studies focus on employing fMRI-based deep neural networks to diagnose neurological disorders such as Alzheimer’s Disease (AD), yet only a handful have provided results regarding explainability. We address this gap by applying several prevalent explainability methods such as grad...

Full description

Saved in:
Bibliographic Details
Published inPLOS ONE Vol. 19; no. 5; p. e0303278
Main Authors Song, Boyue, Yoshida, Shinichi
Format Journal Article
LanguageEnglish
Published United States Public Library of Science (PLoS) 21.05.2024
Public Library of Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Currently, numerous studies focus on employing fMRI-based deep neural networks to diagnose neurological disorders such as Alzheimer’s Disease (AD), yet only a handful have provided results regarding explainability. We address this gap by applying several prevalent explainability methods such as gradient-weighted class activation mapping (Grad-CAM) to an fMRI-based 3D-VGG16 network for AD diagnosis to improve the model’s explainability. The aim is to explore the specific Region of Interest (ROI) of brain the model primarily focuses on when making predictions, as well as whether there are differences in these ROIs between AD and normal controls (NCs). First, we utilized multiple resting-state functional activity maps including ALFF, fALFF, ReHo, and VMHC to reduce the complexity of fMRI data, which differed from many studies that utilized raw fMRI data. Compared to methods utilizing raw fMRI data, this manual feature extraction approach may potentially alleviate the model’s burden. Subsequently, 3D-VGG16 were employed for AD classification, where the final fully connected layers were replaced with a Global Average Pooling (GAP) layer, aimed at mitigating overfitting while preserving spatial information within the feature maps. The model achieved a maximum of 96.4% accuracy on the test set. Finally, several 3D CAM methods were employed to interpret the models. In the explainability results of the models with relatively high accuracy, the highlighted ROIs were primarily located in the precuneus and the hippocampus for AD subjects, while the models focused on the entire brain for NC. This supports current research on ROIs involved in AD. We believe that explaining deep learning models would not only provide support for existing research on brain disorders, but also offer important referential recommendations for the study of currently unknown etiologies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wpcontent/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0303278