Impacts of bus holding strategy on the performance and pollutant emissions of a two-lane mixed traffic system
Abstract This paper investigates the impacts of a bus holding strategy on the mutual interference between buses and passenger cars in a non-dedicated bus route, as well as the impacts on the characteristics of pollutant emissions of passenger cars. The dynamic behaviors of these two types of vehicle...
Saved in:
Published in | Chinese physics B Vol. 33; no. 11; pp. 110502 - 110514 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.10.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Abstract This paper investigates the impacts of a bus holding strategy on the mutual interference between buses and passenger cars in a non-dedicated bus route, as well as the impacts on the characteristics of pollutant emissions of passenger cars. The dynamic behaviors of these two types of vehicles are described using cellular automata (CA) models under open boundary conditions. Numerical simulations are carried out to obtain the phase diagrams of the bus system and the trajectories of buses and passenger cars before and after the implementation of the bus holding strategy under different probabilities of passenger cars entering a two-lane mixed traffic system. Then, we analyze the flow rate, satisfaction rate, and pollutant emission rates of passenger cars together with the performance of a mixed traffic system. The results show that the bus holding strategy can effectively alleviate bus bunching, whereas it has no significant impact on the flow rate and pollutant emission rates of passenger cars; the flow rate, satisfaction rate, and pollutant emission rates of passenger cars for either the traffic system or for each lane are influenced by the bus departure interval and the number of passengers arriving at bus stops. |
---|---|
ISSN: | 1674-1056 2058-3834 |
DOI: | 10.1088/1674-1056/ad7e98 |