Heat hyperalgesia and mechanical hypersensitivity induced by calcitonin gene-related peptide in a mouse model of neurofibromatosis

This study examined whether mice with a deficiency of neurofibromin, a Ras GTPase activating protein, exhibit a nociceptive phenotype and probed a possible contribution by calcitonin gene-related peptide. In the absence of inflammation, Nf1+/- mice (B6.129S6 Nf1/J) and wild type littermates responde...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 9; p. e106767
Main Authors White, Stephanie, Marquez de Prado, Blanca, Russo, Andrew F, Hammond, Donna L
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 03.09.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study examined whether mice with a deficiency of neurofibromin, a Ras GTPase activating protein, exhibit a nociceptive phenotype and probed a possible contribution by calcitonin gene-related peptide. In the absence of inflammation, Nf1+/- mice (B6.129S6 Nf1/J) and wild type littermates responded comparably to heat or mechanical stimuli, except for a subtle enhanced mechanical sensitivity in female Nf1+/- mice. Nociceptive phenotype was also examined after inflammation induced by capsaicin and formalin, which release endogenous calcitonin gene-related peptide. Intraplantar injection of capsaicin evoked comparable heat hyperalgesia and mechanical hypersensitivity in Nf1+/- and wild type mice of both genders. Formalin injection caused a similar duration of licking in male Nf1+/- and wild type mice. Female Nf1+/- mice licked less than wild type mice, but displayed other nociceptive behaviors. In contrast, intraplantar injection of CGRP caused greater heat hyperalgesia in Nf1+/- mice of both genders compared to wild type mice. Male Nf1+/- mice also exhibited greater mechanical hypersensitivity; however, female Nf1+/- mice exhibited less mechanical hypersensitivity than their wild type littermates. Transcripts for calcitonin gene-related peptide were similar in the dorsal root ganglia of both genotypes and genders. Transcripts for receptor activity-modifying protein-1, which is rate-limiting for the calcitonin gene-related peptide receptor, in the spinal cord were comparable for both genotypes and genders. The increased responsiveness to intraplantar calcitonin gene-related peptide suggests that the peripheral actions of calcitonin gene-related peptide are enhanced as a result of the neurofibromin deficit. The analgesic efficacy of calcitonin gene-related peptide receptor antagonists may therefore merit investigation in neurofibromatosis patients.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
SW and BMdP are co-first authors on this work.
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: DLH AFR. Performed the experiments: SW BMdP. Analyzed the data: DLH SW BMdP. Contributed reagents/materials/analysis tools: AFR. Wrote the paper: DLH BMdP.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0106767