Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape
Inbreeding has long been recognized as a primary cause of fitness reduction in both wild and domesticated populations. Consanguineous matings cause inheritance of haplotypes that are identical by descent (IBD) and result in homozygous stretches along the genome of the offspring. Size and position of...
Saved in:
Published in | PLoS genetics Vol. 8; no. 11; p. e1003100 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.11.2012
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Inbreeding has long been recognized as a primary cause of fitness reduction in both wild and domesticated populations. Consanguineous matings cause inheritance of haplotypes that are identical by descent (IBD) and result in homozygous stretches along the genome of the offspring. Size and position of regions of homozygosity (ROHs) are expected to correlate with genomic features such as GC content and recombination rate, but also direction of selection. Thus, ROHs should be non-randomly distributed across the genome. Therefore, demographic history may not fully predict the effects of inbreeding. The porcine genome has a relatively heterogeneous distribution of recombination rate, making Sus scrofa an excellent model to study the influence of both recombination landscape and demography on genomic variation. This study utilizes next-generation sequencing data for the analysis of genomic ROH patterns, using a comparative sliding window approach. We present an in-depth study of genomic variation based on three different parameters: nucleotide diversity outside ROHs, the number of ROHs in the genome, and the average ROH size. We identified an abundance of ROHs in all genomes of multiple pigs from commercial breeds and wild populations from Eurasia. Size and number of ROHs are in agreement with known demography of the populations, with population bottlenecks highly increasing ROH occurrence. Nucleotide diversity outside ROHs is high in populations derived from a large ancient population, regardless of current population size. In addition, we show an unequal genomic ROH distribution, with strong correlations of ROH size and abundance with recombination rate and GC content. Global gene content does not correlate with ROH frequency, but some ROH hotspots do contain positive selected genes in commercial lines and wild populations. This study highlights the importance of the influence of demography and recombination on homozygosity in the genome to understand the effects of inbreeding. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: H-JM MB OM MAMG. Performed the experiments: MB H-JM RPMAC LAFF YP. Analyzed the data: MB H-JM YP LAFF. Contributed reagents/materials/analysis tools: MAMG RPMAC LBS. Wrote the paper: MB. Designed and improved pipeline for ROH detection: MB YP OM H-JM. Discussed and improved manuscript: MAMG RPMAC H-JM OM YP LAFF LBS. The authors have declared that no competing interests exist. |
ISSN: | 1553-7404 1553-7390 1553-7404 |
DOI: | 10.1371/journal.pgen.1003100 |