Interleukin-6 Directly Increases Glucose Metabolism in Resting Human Skeletal Muscle

Interleukin-6 Directly Increases Glucose Metabolism in Resting Human Skeletal Muscle Stephan Glund 1 , Atul Deshmukh 1 , Yun Chau Long 1 , Theodore Moller 1 , Heikki A. Koistinen 2 , Kenneth Caidahl 3 , Juleen R. Zierath 1 and Anna Krook 1 4 1 Department of Molecular Medicine and Surgery, Section fo...

Full description

Saved in:
Bibliographic Details
Published inDiabetes (New York, N.Y.) Vol. 56; no. 6; pp. 1630 - 1637
Main Authors Glund, Stephan, Deshmukh, Atul, Long, Yun Chau, Moller, Theodore, Koistinen, Heikki A, Caidahl, Kenneth, Zierath, Juleen R, Krook, Anna
Format Journal Article
LanguageEnglish
Published Alexandria, VA American Diabetes Association 01.06.2007
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Interleukin-6 Directly Increases Glucose Metabolism in Resting Human Skeletal Muscle Stephan Glund 1 , Atul Deshmukh 1 , Yun Chau Long 1 , Theodore Moller 1 , Heikki A. Koistinen 2 , Kenneth Caidahl 3 , Juleen R. Zierath 1 and Anna Krook 1 4 1 Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden 2 Helsinki University Central Hospital and Biomedicum, Helsinki, Finland 3 Department of Molecular Medicine and Surgery, Section for Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden 4 Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden Address correspondence and reprint requests to Anna Krook, Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4, SE-171 77 Stockholm, Sweden. E-mail: anna.krook{at}ki.se Abstract Interleukin (IL)-6 is a proinflammatory cytokine shown to modify insulin sensitivity. Elevated plasma levels of IL-6 are observed in insulin-resistant states. Interestingly, plasma IL-6 levels also increase during exercise, with skeletal muscle being the predominant source. Thus, IL-6 has also been suggested to promote insulin-mediated glucose utilization. In this study, we determined the direct effects of IL-6 on glucose transport and signal transduction in human skeletal muscle. Skeletal muscle strips were prepared from vastus lateralis biopsies obtained from 22 healthy men. Muscle strips were incubated with or without IL-6 (120 ng/ml). We found that IL-6 increased glucose transport in human skeletal muscle 1.3-fold ( P < 0.05). A 30-min pre-exposure to IL-6 did not affect insulin-stimulated glucose transport. IL-6 also increased skeletal muscle glucose incorporation into glycogen, as well as glucose oxidation (1.5- and 1.3-fold, respectively; P < 0.05). IL-6 increased phosphorylation of STAT3 (signal transducer and activator of transcription 3; P < 0.05), AMP-activated protein kinase ( P = 0.063), and p38 mitogen-activated protein kinase ( P < 0.05) and reduced phosphorylation of S6 ribosomal protein ( P < 0.05). In contrast, phosphorylation of protein kinase B/Akt, AS160 (Akt substrate of 160 kDa), and GSK3α/β (glycogen synthase kinase 3α/β) as well as insulin receptor substrate 1–associated phosphatidylinositol 3-kinase activity remained unaltered. In conclusion, acute IL-6 exposure increases glucose metabolism in resting human skeletal muscle. Insulin-stimulated glucose transport and insulin signaling were unchanged after IL-6 exposure. AMPK, AMP-activated protein kinase AS160, Akt substrate of 160 kDa GSK, glycogen synthase kinase IL, interleukin IRS, insulin receptor substrate KHBB, Krebs-Henseleit bicarbonate buffer MAPK, mitogen-activated protein kinase PKB, protein kinase B STAT, signal transducer and activator of transcription Footnotes Published ahead or print at http://diabetes.diabetesjournals.org on 15 March 2007. DOI: 10.2337/db06-1733. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Accepted February 23, 2007. Received December 13, 2006. DIABETES
AbstractList Interleukin (IL)-6 is a proinflammatory cytokine shown to modify insulin sensitivity. Elevated plasma levels of IL-6 are observed in insulin-resistant states. Interestingly, plasma IL-6 levels also increase during exercise, with skeletal muscle being the predominant source. Thus, IL-6 has also been suggested to promote insulin-mediated glucose utilization. In this study, we determined the direct effects of IL-6 on glucose transport and signal transduction in human skeletal muscle. Skeletal muscle strips were prepared from vastus lateralis biopsies obtained from 22 healthy men. Muscle strips were incubated with or without IL-6 (120 ng/ml). We found that IL-6 increased glucose transport in human skeletal muscle 1.3-fold (P &lt; 0.05). A 30-min pre-exposure to IL-6 did not affect insulin-stimulated glucose transport. IL-6 also increased skeletal muscle glucose incorporation into glycogen, as well as glucose oxidation (1.5- and 1.3-fold, respectively; P &lt; 0.05). IL-6 increased phosphorylation of STAT3 (signal transducer and activator of transcription 3; P &lt; 0.05), AMP-activated protein kinase (P = 0.063), and p38 mitogen-activated protein kinase (P &lt; 0.05) and reduced phosphorylation of S6 ribosomal protein (P &lt; 0.05). In contrast, phosphorylation of protein kinase B/Akt, AS160 (Akt substrate of 160 kDa), and GSK3alpha/beta (glycogen synthase kinase 3alpha/beta) as well as insulin receptor substrate 1-associated phosphatidylinositol 3-kinase activity remained unaltered. In conclusion, acute IL-6 exposure increases glucose metabolism in resting human skeletal muscle. Insulin-stimulated glucose transport and insulin signaling were unchanged after IL-6 exposure.
Interleukin (IL)-6 is a proinflammatory cytokine shown to modify insulin sensitivity. Elevated plasma levels of IL-6 are observed in insulin-resistant states. Interestingly, plasma IL-6 levels also increase during exercise, with skeletal muscle being the predominant source. Thus, IL-6 has also been suggested to promote insulin-mediated glucose utilization. In this study, we determined the direct effects of IL-6 on glucose transport and signal transduction in human skeletal muscle. Skeletal muscle strips were prepared from vastus lateralis biopsies obtained from 22 healthy men. Muscle strips were incubated with or without IL-6 (120 ng/ml). We found that IL-6 increased glucose transport in human skeletal muscle 1.3-fold (P < 0.05). A 30-min pre-exposure to IL-6 did not affect insulin-stimulated glucose transport. IL-6 also increased skeletal muscle glucose incorporation into glycogen, as well as glucose oxidation (1.5- and 1.3-fold, respectively; P < 0.05). IL-6 increased phosphorylation of STAT3 (signal transducer and activator of transcription 3; P < 0.05), AMP-activated protein kinase (P = 0.063), and p38 mitogen-activated protein kinase (P < 0.05) and reduced phosphorylation of S6 ribosomal protein (P < 0.05). In contrast, phosphorylation of protein kinase B/Akt, AS160 (Akt substrate of 160 kDa), and GSK3α/β (glycogen synthase kinase 3α/β) as well as insulin receptor substrate 1–associated phosphatidylinositol 3-kinase activity remained unaltered. In conclusion, acute IL-6 exposure increases glucose metabolism in resting human skeletal muscle. Insulin-stimulated glucose transport and insulin signaling were unchanged after IL-6 exposure.
Interleukin (IL)-6 is a proinflammatory cytokine shown to modify insulin sensitivity. Elevated plasma levels of IL-6 are observed in insulin-resistant states. Interestingly, plasma IL-6 levels also increase during exercise, with skeletal muscle being the predominant source. Thus, IL-6 has also been suggested to promote insulin-mediated glucose utilization. In this study, we determined the direct effects of IL-6 on glucose transport and signal transduction in human skeletal muscle. Skeletal muscle strips were prepared from vastus lateralis biopsies obtained from 22 healthy men. Muscle strips were incubated with or without IL-6 (120 ng/ml). We found that IL-6 increased glucose transport in human skeletal muscle 1.3-fold (P < 0.05). A 30-min pre-exposure to IL-6 did not affect insulin-stimulated glucose transport. IL-6 also increased skeletal muscle glucose incorporation into glycogen, as well as glucose oxidation (1.5- and 1.3-fold, respectively; P < 0.05). IL-6 increased phosphorylation of STAT3 (signal transducer and activator of transcription 3; P < 0.05), AMP-activated protein kinase (P = 0.063), and p38 mitogen-activated protein kinase (P < 0.05) and reduced phosphorylation of S6 ribosomal protein (P < 0.05). In contrast, phosphorylation of protein kinase B/Akt, AS160 (Akt substrate of 160 kDa), and GSK3alpha/beta (glycogen synthase kinase 3alpha/beta) as well as insulin receptor substrate 1-associated phosphatidylinositol 3-kinase activity remained unaltered. In conclusion, acute IL-6 exposure increases glucose metabolism in resting human skeletal muscle. Insulin-stimulated glucose transport and insulin signaling were unchanged after IL-6 exposure.
Interleukin (IL)-6 is a proinflammatory cytokine shown to modify insulin sensitivity. Elevated plasma levels of IL-6 are observed in insulin-resistant states. Interestingly, plasma IL-6 levels also increase during exercise, with skeletal muscle being the predominant source. Thus, IL-6 has also been suggested to promote insulin-mediated glucose utilization. In this study, we determined the direct effects of IL-6 on glucose transport and signal transduction in human skeletal muscle. Skeletal muscle strips were prepared from vastus lateralis biopsies obtained from 22 healthy men. Muscle strips were incubated with or without IL-6 (120 ng/ml). We found that IL-6 increased glucose transport in human skeletal muscle 1.3-fold (P < 0.05). A 30-min pre-exposure to IL-6 did not affect insulin-stimulated glucose transport. IL-6 also increased skeletal muscle glucose incorporation into glycogen, as well as glucose oxidation (1.5- and 1.3-fold, respectively; P < 0.05). IL-6 increased phosphorylation of STAT3 (signal transducer and activator of transcription 3; P < 0.05), AMP-activated protein kinase (P = 0.063), and p38 mitogen-activated protein kinase (P < 0.05) and reduced phosphorylation of $6 ribosomal protein (P < 0.05). In contrast, phosphorylation of protein kinase B/Akt, AS160 (Akt substrate of 160 kDa), and GSK3α/β (glycogen synthase kinase 3α/beta]) as well as insulin receptor substrate 1-associated phosphatidylinositol 3-kinase activity remained unaltered. In conclusion, acute IL-6 exposure increases glucose metabolism in resting human skeletal muscle. Insulin-stimulated glucose transport and insulin signaling were unchanged after IL-6 exposure.
Interleukin-6 Directly Increases Glucose Metabolism in Resting Human Skeletal Muscle Stephan Glund 1 , Atul Deshmukh 1 , Yun Chau Long 1 , Theodore Moller 1 , Heikki A. Koistinen 2 , Kenneth Caidahl 3 , Juleen R. Zierath 1 and Anna Krook 1 4 1 Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden 2 Helsinki University Central Hospital and Biomedicum, Helsinki, Finland 3 Department of Molecular Medicine and Surgery, Section for Clinical Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden 4 Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, Stockholm, Sweden Address correspondence and reprint requests to Anna Krook, Department of Physiology and Pharmacology, Section for Integrative Physiology, Karolinska Institutet, von Eulers väg 4, SE-171 77 Stockholm, Sweden. E-mail: anna.krook{at}ki.se Abstract Interleukin (IL)-6 is a proinflammatory cytokine shown to modify insulin sensitivity. Elevated plasma levels of IL-6 are observed in insulin-resistant states. Interestingly, plasma IL-6 levels also increase during exercise, with skeletal muscle being the predominant source. Thus, IL-6 has also been suggested to promote insulin-mediated glucose utilization. In this study, we determined the direct effects of IL-6 on glucose transport and signal transduction in human skeletal muscle. Skeletal muscle strips were prepared from vastus lateralis biopsies obtained from 22 healthy men. Muscle strips were incubated with or without IL-6 (120 ng/ml). We found that IL-6 increased glucose transport in human skeletal muscle 1.3-fold ( P < 0.05). A 30-min pre-exposure to IL-6 did not affect insulin-stimulated glucose transport. IL-6 also increased skeletal muscle glucose incorporation into glycogen, as well as glucose oxidation (1.5- and 1.3-fold, respectively; P < 0.05). IL-6 increased phosphorylation of STAT3 (signal transducer and activator of transcription 3; P < 0.05), AMP-activated protein kinase ( P = 0.063), and p38 mitogen-activated protein kinase ( P < 0.05) and reduced phosphorylation of S6 ribosomal protein ( P < 0.05). In contrast, phosphorylation of protein kinase B/Akt, AS160 (Akt substrate of 160 kDa), and GSK3α/β (glycogen synthase kinase 3α/β) as well as insulin receptor substrate 1–associated phosphatidylinositol 3-kinase activity remained unaltered. In conclusion, acute IL-6 exposure increases glucose metabolism in resting human skeletal muscle. Insulin-stimulated glucose transport and insulin signaling were unchanged after IL-6 exposure. AMPK, AMP-activated protein kinase AS160, Akt substrate of 160 kDa GSK, glycogen synthase kinase IL, interleukin IRS, insulin receptor substrate KHBB, Krebs-Henseleit bicarbonate buffer MAPK, mitogen-activated protein kinase PKB, protein kinase B STAT, signal transducer and activator of transcription Footnotes Published ahead or print at http://diabetes.diabetesjournals.org on 15 March 2007. DOI: 10.2337/db06-1733. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. Accepted February 23, 2007. Received December 13, 2006. DIABETES
Interleukin (IL)-6 is a proinflammatory cytokine shown to modify insulin sensitivity. Elevated plasma levels of IL-6 are observed in insulin-resistant states. Interestingly, plasma IL-6 levels also increase during exercise, with skeletal muscle being the predominant source. Thus, IL-6 has also been suggested to promote insulin-mediated glucose utilization. In this study, we determined the direct effects of IL-6 on glucose transport and signal transduction in human skeletal muscle. Skeletal muscle strips were prepared from vastus lateralis biopsies obtained from 22 healthy men. Muscle strips were incubated with or without IL-6 (120 ng/ml). We found that IL-6 increased glucose transport in human skeletal muscle 1.3-fold (P < 0.05). A 30-min pre-exposure to IL-6 did not affect insulin-stimulated glucose transport. IL-6 also increased skeletal muscle glucose incorporation into glycogen, as well as glucose oxidation (1.5- and 1.3-fold, respectively; P < 0.05). IL-6 increased phosphorylation of STAT3 (signal transducer and activator of transcription 3; P < 0.05), AMP-activated protein kinase (P = 0.063), and p38 mitogen-activated protein kinase (P < 0.05) and reduced phosphorylation of S6 ribosomal protein (P < 0.05). In contrast, phosphorylation of protein kinase B/Akt, AS160 (Akt substrate of 160 kDa), and GSK3 alpha /{szligbeta} (glycogen synthase kinase 3 alpha /{szligbeta}) as well as insulin receptor substrate 1-associated phosphatidylinositol 3-kinase activity remained unaltered. In conclusion, acute IL-6 exposure increases glucose metabolism in resting human skeletal muscle. Insulin-stimulated glucose transport and insulin signaling were unchanged after IL-6 exposure.
Audience Professional
Author Atul Deshmukh
Juleen R. Zierath
Stephan Glund
Kenneth Caidahl
Anna Krook
Theodore Moller
Yun Chau Long
Heikki A. Koistinen
Author_xml – sequence: 1
  givenname: Stephan
  surname: Glund
  fullname: Glund, Stephan
  organization: Department of Molecular Medicine and Surgery, Section for Integrative Physiology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
– sequence: 2
  givenname: Atul
  surname: Deshmukh
  fullname: Deshmukh, Atul
– sequence: 3
  givenname: Yun Chau
  surname: Long
  fullname: Long, Yun Chau
– sequence: 4
  givenname: Theodore
  surname: Moller
  fullname: Moller, Theodore
– sequence: 5
  givenname: Heikki A
  surname: Koistinen
  fullname: Koistinen, Heikki A
– sequence: 6
  givenname: Kenneth
  surname: Caidahl
  fullname: Caidahl, Kenneth
– sequence: 7
  givenname: Juleen R
  surname: Zierath
  fullname: Zierath, Juleen R
– sequence: 8
  givenname: Anna
  surname: Krook
  fullname: Krook, Anna
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18811670$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/17363741$$D View this record in MEDLINE/PubMed
https://gup.ub.gu.se/publication/267982$$DView record from Swedish Publication Index
http://kipublications.ki.se/Default.aspx?queryparsed=id:115529383$$DView record from Swedish Publication Index
BookMark eNqFkl2L1DAYhYusuB964R-QoiiIdE2aJmkvl1FnB2ZZ0BW8C2n6ppudTDrbNKz7702Z4jAyKiEkvHnOydc5TY5c5yBJXmJ0nhPCPzY1YhnmhDxJTnBFqozk_MdRcoIQzmO94sfJqfd3CCEW27PkOLKM8AKfJDcLN0BvIayMy1j6yfSgBvuYLpzqQXrw6dwG1XlIr2CQdWeNX6fGpV_BD8a16WVYS5d-W4GNyza9Cl5ZeJ481dJ6eDGNZ8n3L59vZpfZ8nq-mF0sM8U5GbJCE82rHJM6p6UCAKZrWhccNazGdQUFqgiRHDeUUY5LUAXTGmvWYIShAU3Okmrr6x9gE2qx6c1a9o-ikybOu0ZM9ZUZu_AgMKY0r0hJojb7q7YNGxFLbRglOeNVmUf-3ZaPxvch3l6sjVdgrXTQBS84opQy8n8wRwWKljyCr_8A77rQu_hgIsesKBHhI_RmC7XSgjBOd0Mv1egoLiJEaUkrtLvMHtWCg17amBVtYnmPPz_Ax9bA2qiDgvd7gsgM8HNoZfBelPPlvw4zsaqzFloQMQGz64Pequ-870H__guMxJhvMeZbjPmO7KvpzUK9hmZHToGOwNsJkF5Jq3vplPE7riwxZnzc9MOWuzXt7UNMvWiMrGEAv5tQJuK2jCDyC5KFD1M
CODEN DIAEAZ
CitedBy_id crossref_primary_10_1016_j_neuropharm_2011_12_010
crossref_primary_10_1016_j_cyto_2023_156226
crossref_primary_10_1519_JSC_0b013e3182176638
crossref_primary_10_1111_liv_12645
crossref_primary_10_2337_db07_1062
crossref_primary_10_1016_S1131_3587_09_71768_6
crossref_primary_10_2337_db08_0659
crossref_primary_10_3390_ijms19082265
crossref_primary_10_3389_fphys_2022_1040809
crossref_primary_10_3390_ijms22105159
crossref_primary_10_1016_j_cmet_2023_12_008
crossref_primary_10_1182_bloodadvances_2021006241
crossref_primary_10_1042_BST0351295
crossref_primary_10_1530_JOE_14_0408
crossref_primary_10_1152_ajpcell_00025_2012
crossref_primary_10_1507_endocrj_EJ12_0316
crossref_primary_10_1002_jcsm_12896
crossref_primary_10_1152_ajpendo_00450_2013
crossref_primary_10_1089_scd_2019_0250
crossref_primary_10_18585_inabj_v3i1_133
crossref_primary_10_3389_fspor_2022_969623
crossref_primary_10_1007_s12013_014_9980_x
crossref_primary_10_1089_ars_2019_7949
crossref_primary_10_1152_ajpendo_00398_2017
crossref_primary_10_1016_S1098_3597_09_80002_1
crossref_primary_10_3389_fphys_2016_00282
crossref_primary_10_3389_fimmu_2023_1199233
crossref_primary_10_3132_dvdr_2008_002
crossref_primary_10_3390_antiox10020179
crossref_primary_10_1111_j_1365_2265_2008_03483_x
crossref_primary_10_2337_dc08_0553
crossref_primary_10_1016_j_cell_2015_01_012
crossref_primary_10_1080_02656736_2019_1623423
crossref_primary_10_1002_mrd_22029
crossref_primary_10_1590_S0100_879X2011007500113
crossref_primary_10_1016_j_mce_2009_08_018
crossref_primary_10_20964_2017_03_04
crossref_primary_10_1016_j_smhs_2023_09_001
crossref_primary_10_1038_nrendo_2009_62
crossref_primary_10_3390_cells10071816
crossref_primary_10_1152_ajplung_00042_2020
crossref_primary_10_3389_fimmu_2021_703972
crossref_primary_10_1016_j_arr_2022_101829
crossref_primary_10_1016_S0300_8932_09_70037_5
crossref_primary_10_1249_MSS_0b013e3181b07d12
crossref_primary_10_3390_antiox10071035
crossref_primary_10_1017_S0007114515002962
crossref_primary_10_1080_09168451_2020_1814127
crossref_primary_10_1249_MSS_0000000000002207
crossref_primary_10_1152_ajpendo_00533_2010
crossref_primary_10_1186_s12933_016_0484_4
crossref_primary_10_1016_j_cytogfr_2018_10_001
crossref_primary_10_1152_ajpendo_00328_2010
crossref_primary_10_1111_j_1748_1716_2009_01969_x
crossref_primary_10_1016_j_mam_2019_06_004
crossref_primary_10_1051_e3sconf_20197801006
crossref_primary_10_1007_s11033_009_9914_7
crossref_primary_10_1152_japplphysiol_90831_2008
crossref_primary_10_1152_physiol_00019_2013
crossref_primary_10_1016_j_cmet_2012_12_012
crossref_primary_10_1111_cpf_12170
crossref_primary_10_1111_j_1467_789X_2007_00410_x
crossref_primary_10_1080_02640410801885941
crossref_primary_10_1042_BST20180136
crossref_primary_10_1152_ajpendo_00571_2013
crossref_primary_10_3109_10409238_2010_488215
crossref_primary_10_3389_fphys_2022_928195
crossref_primary_10_3389_fphys_2023_1250134
crossref_primary_10_1007_s00421_019_04238_y
crossref_primary_10_1111_eci_12781
crossref_primary_10_1113_jphysiol_2008_153551
crossref_primary_10_1152_physrev_00054_2021
crossref_primary_10_3390_cells11244008
crossref_primary_10_1152_ajpendo_00291_2016
crossref_primary_10_1016_j_exer_2023_109721
crossref_primary_10_1186_s12974_021_02242_8
crossref_primary_10_1002_dmrr_812
crossref_primary_10_1002_mnfr_201300126
crossref_primary_10_1186_1741_7015_11_64
crossref_primary_10_1016_j_mce_2021_111531
crossref_primary_10_1016_j_tem_2008_12_002
crossref_primary_10_1007_s00125_010_1865_y
crossref_primary_10_3390_medicina57020104
crossref_primary_10_1038_s42255_022_00538_4
crossref_primary_10_1111_dom_12299
crossref_primary_10_1210_en_2008_1204
crossref_primary_10_1007_s00424_013_1399_5
crossref_primary_10_1016_j_cyto_2011_04_019
crossref_primary_10_1152_ajpregu_00716_2007
crossref_primary_10_1016_j_molmet_2015_05_001
crossref_primary_10_1002_dmrr_883
crossref_primary_10_1016_j_bbadis_2016_12_008
crossref_primary_10_1007_s40520_019_01188_5
crossref_primary_10_1152_physrev_90100_2007
crossref_primary_10_1007_s00125_010_1754_4
crossref_primary_10_1111_j_1748_1716_2007_01779_x
crossref_primary_10_1155_2021_2183427
crossref_primary_10_1007_s12020_014_0230_1
crossref_primary_10_1007_s10787_018_0458_0
crossref_primary_10_1152_ajpendo_00307_2009
crossref_primary_10_1016_j_bbih_2019_100011
crossref_primary_10_1152_ajpendo_00313_2014
crossref_primary_10_1007_s00592_015_0807_z
crossref_primary_10_3389_fnut_2022_840209
crossref_primary_10_1016_j_smhs_2024_01_006
crossref_primary_10_1096_fj_201900453R
crossref_primary_10_2147_JIR_S322247
crossref_primary_10_2337_db11_1790
crossref_primary_10_1249_MSS_0000000000002579
crossref_primary_10_1007_s00592_011_0259_z
crossref_primary_10_1007_s00580_011_1366_5
crossref_primary_10_1016_j_autrev_2009_01_012
crossref_primary_10_1016_j_diabet_2007_09_004
crossref_primary_10_1194_jlr_P700033_JLR200
crossref_primary_10_1016_j_bbrc_2011_05_073
crossref_primary_10_1007_s00432_008_0537_5
crossref_primary_10_3389_fcell_2021_652152
crossref_primary_10_1038_s41598_018_34238_5
crossref_primary_10_14814_phy2_12064
crossref_primary_10_1007_s11332_019_00567_9
crossref_primary_10_14814_phy2_15208
crossref_primary_10_1113_expphysiol_2009_048173
crossref_primary_10_1155_2012_145418
crossref_primary_10_1152_physrev_00012_2011
crossref_primary_10_1017_S0007114510004885
crossref_primary_10_2337_db08_1293
crossref_primary_10_1038_srep46750
crossref_primary_10_3390_ani14050709
crossref_primary_10_1152_ajpendo_00339_2011
crossref_primary_10_1096_fj_10_157313
crossref_primary_10_3390_ijms22115783
crossref_primary_10_1002_cbf_1795
crossref_primary_10_1155_2008_109502
crossref_primary_10_1371_journal_pone_0030659
crossref_primary_10_1007_s00424_019_02253_8
crossref_primary_10_1016_j_jtcme_2021_08_011
crossref_primary_10_1155_2015_594039
crossref_primary_10_3389_fphys_2017_00319
crossref_primary_10_1016_j_cyto_2017_03_014
crossref_primary_10_1172_jci_insight_172959
crossref_primary_10_1007_s41782_020_00115_3
crossref_primary_10_1016_j_bbapap_2013_08_004
crossref_primary_10_1016_j_nupar_2011_07_003
crossref_primary_10_1097_SHK_0000000000000849
Cites_doi 10.1152/ajpendo.00255.2002
10.2337/diabetes.51.12.3391
10.1074/jbc.M301977200
10.1007/s00125-004-1403-x
10.1074/jbc.M210689200
10.1111/j.1463-1326.2004.00463.x
10.1016/S0026-0495(03)00105-7
10.1152/japplphysiol.01208.2006
10.1016/j.bbrc.2004.05.188
10.1091/mbc.e03-08-0585
10.1007/s00125-004-1544-y
10.1007/s10254-003-0012-2
10.1210/me.2005-0490
10.1074/jbc.M509782200
10.1152/ajpendo.00566.2005
10.1097/00000542-199805000-00037
10.1113/jphysiol.2002.030437
10.1038/oby.2004.51
10.1016/j.bbrc.2003.09.048
10.1074/jbc.M403528200
10.2337/diabetes.39.11.1408
10.1038/nm0102-75
10.1530/eje.1.02127
10.1097/00003677-200507000-00003
10.1074/jbc.271.12.7134
10.1210/jcem.87.5.8450
10.1111/j.1469-7793.1998.949bp.x
10.1152/ajpendo.00448.2004
10.2337/diabetes.49.3.517
10.1079/PNS2004356
10.1046/j.1432-1033.2002.03074.x
10.1016/j.jbiomech.2004.11.009
10.1152/japplphysiol.00590.2005
10.2337/diabetes.52.3.812
10.1210/jc.82.12.4196
10.1172/JCI108559
10.1172/JCI2629
10.1210/en.2004-1468
10.1096/fj.01-0876rev
10.1210/en.2003-1319
10.1038/sj.ijo.0802502
10.2337/diabetes.53.4.1060
10.1126/science.1104342
10.1152/ajpendo.2001.280.5.E745
10.1152/ajpregu.1995.268.1.R78
10.1038/oby.2005.92
10.1016/j.bbi.2005.04.008
10.2337/db05-1404
ContentType Journal Article
Copyright 2007 INIST-CNRS
COPYRIGHT 2007 American Diabetes Association
Copyright American Diabetes Association Jun 2007
Copyright_xml – notice: 2007 INIST-CNRS
– notice: COPYRIGHT 2007 American Diabetes Association
– notice: Copyright American Diabetes Association Jun 2007
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
8GL
3V.
7RV
7X7
7XB
88E
88I
8AF
8AO
8C1
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BEC
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9-
K9.
KB0
LK8
M0R
M0S
M1P
M2O
M2P
M7P
MBDVC
NAPCQ
PQEST
PQQKQ
PQUKI
PRINS
Q9U
S0X
7T5
H94
7X8
ADTPV
AOWAS
F1U
DOI 10.2337/db06-1733
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Gale In Context: High School
ProQuest Central (Corporate)
Nursing & Allied Health Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
ProQuest Pharma Collection
Public Health Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
eLibrary
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
Consumer Health Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Consumer Health Database
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Research Library
Science Database
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
SIRS Editorial
Immunology Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
SIRS Editorial
elibrary
ProQuest Health & Medical Complete (Alumni)
ProQuest AP Science
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Family Health (Alumni Edition)
ProQuest Central China
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Research Library
ProQuest Medical Library (Alumni)
ProQuest Public Health
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest Family Health
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
AIDS and Cancer Research Abstracts
Immunology Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
Research Library Prep


AIDS and Cancer Research Abstracts
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1939-327X
EndPage 1637
ExternalDocumentID oai_prod_swepub_kib_ki_se_115529383
oai_gup_ub_gu_se_267982
1295533381
A164558590
10_2337_db06_1733
17363741
18811670
diabetes_56_6_1630
Genre Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID -
08R
0R
1AW
29F
2WC
3V.
4.4
53G
55
5GY
5RE
5RS
5VS
7RV
7X7
88E
88I
8AF
8AO
8C1
8F7
8FE
8FH
8FI
8FJ
8G5
8GL
8R4
8R5
AAQQT
AAWTL
AAYEP
AAYJJ
ABFLS
ABOCM
ABPTK
ABUWG
ACDCL
ACGOD
ACPRK
ADACO
ADBBV
ADBIT
AENEX
AFFNX
AFKRA
AHMBA
ALMA_UNASSIGNED_HOLDINGS
AZQEC
BAWUL
BBAFP
BBNVY
BCR
BCU
BEC
BENPR
BES
BHPHI
BKEYQ
BKNYI
BLC
BPHCQ
BVXVI
C1A
CS3
DIK
DU5
DWQXO
E3Z
EBS
EDB
EJD
EX3
F5P
FRP
FYUFA
GICCO
GJ
GNUQQ
GUQSH
GX1
H13
HCIFZ
HZ
H~9
IAG
IAO
IEA
IHR
INH
INR
IOF
IPO
J5H
K-O
K9-
KM
KQ8
L7B
LK8
M0R
M1P
M2O
M2P
M2Q
M5
M7P
MBDVC
O0-
O9-
OB3
OBH
OK1
OVD
P2P
PADUT
PCD
PEA
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PSQYO
Q2X
RHF
RHI
RPM
S0X
SJFOW
SJN
SV3
TDI
WH7
WOQ
WOW
X7M
XZ
ZA5
ZY1
---
.55
.GJ
.XZ
08P
0R~
18M
1CY
354
6PF
AAKAS
AAUGY
AAYOK
ACGFO
ADZCM
AEGXH
AERZD
AFHIN
AI.
AIAGR
BTFSW
CCPQU
EMOBN
HZ~
IQODW
ITC
K2M
M5~
MVM
N4W
NAPCQ
O5R
O5S
OHH
TEORI
TR2
UKHRP
VH1
VVN
W8F
XOL
YFH
YHG
YOC
YQJ
ZGI
ZXP
~KM
AIZAD
ALIPV
CGR
CUY
CVF
ECM
EIF
HMCUK
NPM
AAYXX
CITATION
7XB
8FK
K9.
Q9U
7T5
H94
7X8
ADTPV
AOWAS
F1U
ID FETCH-LOGICAL-c773t-4f3f79213b258ceee6fb5b470d6b1b9e40933a71d565718ec46ff1f6d101edef3
IEDL.DBID 7X7
ISSN 0012-1797
1939-327X
IngestDate Wed Oct 02 03:52:31 EDT 2024
Sat Aug 24 00:47:41 EDT 2024
Wed Jul 24 13:25:45 EDT 2024
Fri Aug 16 11:55:07 EDT 2024
Fri Sep 13 03:37:24 EDT 2024
Wed Jul 17 19:10:53 EDT 2024
Wed Oct 02 03:45:59 EDT 2024
Tue Jul 16 05:07:23 EDT 2024
Sat Sep 28 21:31:02 EDT 2024
Fri Aug 23 08:05:56 EDT 2024
Fri Aug 23 02:44:08 EDT 2024
Sat Sep 28 07:57:26 EDT 2024
Sun Oct 22 16:05:45 EDT 2023
Fri Jan 15 19:45:55 EST 2021
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Endocrinopathy
Human
Interleukin 6
Diabetes mellitus
Cytokine
Glucose
Striated muscle
Metabolism
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c773t-4f3f79213b258ceee6fb5b470d6b1b9e40933a71d565718ec46ff1f6d101edef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://diabetesjournals.org/diabetes/article-pdf/56/6/1630/248150/zdb00607001630.pdf
PMID 17363741
PQID 216480377
PQPubID 34443
PageCount 8
ParticipantIDs proquest_miscellaneous_70555632
proquest_miscellaneous_20406797
swepub_primary_oai_gup_ub_gu_se_267982
gale_incontextgauss_8GL_A164558590
gale_infotracacademiconefile_A164558590
highwire_diabetes_diabetes_56_6_1630
gale_infotracgeneralonefile_A164558590
pubmed_primary_17363741
gale_infotracmisc_A164558590
proquest_journals_216480377
gale_incontextcollege_GICCO_A164558590
pascalfrancis_primary_18811670
crossref_primary_10_2337_db06_1733
swepub_primary_oai_prod_swepub_kib_ki_se_115529383
ProviderPackageCode RHF
RHI
PublicationCentury 2000
PublicationDate 2007-06-01
PublicationDateYYYYMMDD 2007-06-01
PublicationDate_xml – month: 06
  year: 2007
  text: 2007-06-01
  day: 01
PublicationDecade 2000
PublicationPlace Alexandria, VA
PublicationPlace_xml – name: Alexandria, VA
– name: United States
– name: New York
PublicationTitle Diabetes (New York, N.Y.)
PublicationTitleAlternate Diabetes
PublicationYear 2007
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References 2022051616291026200_R49
2022051616291026200_R48
2022051616291026200_R47
2022051616291026200_R46
2022051616291026200_R41
2022051616291026200_R40
2022051616291026200_R45
2022051616291026200_R44
2022051616291026200_R43
2022051616291026200_R42
2022051616291026200_R38
2022051616291026200_R37
2022051616291026200_R36
2022051616291026200_R35
2022051616291026200_R39
2022051616291026200_R30
2022051616291026200_R34
2022051616291026200_R33
2022051616291026200_R32
2022051616291026200_R31
2022051616291026200_R27
2022051616291026200_R26
2022051616291026200_R25
2022051616291026200_R24
2022051616291026200_R29
2022051616291026200_R28
2022051616291026200_R8
2022051616291026200_R9
2022051616291026200_R6
2022051616291026200_R7
2022051616291026200_R1
2022051616291026200_R4
2022051616291026200_R23
2022051616291026200_R5
2022051616291026200_R22
2022051616291026200_R2
2022051616291026200_R21
2022051616291026200_R3
2022051616291026200_R20
2022051616291026200_R16
2022051616291026200_R15
2022051616291026200_R14
2022051616291026200_R13
2022051616291026200_R19
2022051616291026200_R18
2022051616291026200_R17
2022051616291026200_R51
2022051616291026200_R50
2022051616291026200_R12
2022051616291026200_R11
2022051616291026200_R10
References_xml – ident: 2022051616291026200_R50
  doi: 10.1152/ajpendo.00255.2002
– ident: 2022051616291026200_R16
  doi: 10.2337/diabetes.51.12.3391
– ident: 2022051616291026200_R17
  doi: 10.1074/jbc.M301977200
– ident: 2022051616291026200_R9
  doi: 10.1007/s00125-004-1403-x
– ident: 2022051616291026200_R15
  doi: 10.1074/jbc.M210689200
– ident: 2022051616291026200_R8
  doi: 10.1111/j.1463-1326.2004.00463.x
– ident: 2022051616291026200_R14
  doi: 10.1016/S0026-0495(03)00105-7
– ident: 2022051616291026200_R4
  doi: 10.1152/japplphysiol.01208.2006
– ident: 2022051616291026200_R34
  doi: 10.1016/j.bbrc.2004.05.188
– ident: 2022051616291026200_R40
  doi: 10.1091/mbc.e03-08-0585
– ident: 2022051616291026200_R22
  doi: 10.1007/s00125-004-1544-y
– ident: 2022051616291026200_R31
  doi: 10.1007/s10254-003-0012-2
– ident: 2022051616291026200_R20
  doi: 10.1210/me.2005-0490
– ident: 2022051616291026200_R33
  doi: 10.1074/jbc.M509782200
– ident: 2022051616291026200_R35
  doi: 10.1152/ajpendo.00566.2005
– ident: 2022051616291026200_R45
  doi: 10.1097/00000542-199805000-00037
– ident: 2022051616291026200_R47
  doi: 10.1113/jphysiol.2002.030437
– ident: 2022051616291026200_R18
  doi: 10.1038/oby.2004.51
– ident: 2022051616291026200_R49
  doi: 10.1016/j.bbrc.2003.09.048
– ident: 2022051616291026200_R24
– ident: 2022051616291026200_R36
  doi: 10.1074/jbc.M403528200
– ident: 2022051616291026200_R25
  doi: 10.2337/diabetes.39.11.1408
– ident: 2022051616291026200_R23
  doi: 10.1038/nm0102-75
– ident: 2022051616291026200_R48
  doi: 10.1530/eje.1.02127
– ident: 2022051616291026200_R10
  doi: 10.1097/00003677-200507000-00003
– ident: 2022051616291026200_R27
  doi: 10.1074/jbc.271.12.7134
– ident: 2022051616291026200_R7
  doi: 10.1210/jcem.87.5.8450
– ident: 2022051616291026200_R11
  doi: 10.1111/j.1469-7793.1998.949bp.x
– ident: 2022051616291026200_R30
  doi: 10.1152/ajpendo.00448.2004
– ident: 2022051616291026200_R28
  doi: 10.2337/diabetes.49.3.517
– ident: 2022051616291026200_R3
  doi: 10.1079/PNS2004356
– ident: 2022051616291026200_R37
  doi: 10.1046/j.1432-1033.2002.03074.x
– ident: 2022051616291026200_R39
  doi: 10.1016/j.jbiomech.2004.11.009
– ident: 2022051616291026200_R42
  doi: 10.1152/japplphysiol.00590.2005
– ident: 2022051616291026200_R43
  doi: 10.2337/diabetes.52.3.812
– ident: 2022051616291026200_R41
– ident: 2022051616291026200_R6
  doi: 10.1210/jc.82.12.4196
– ident: 2022051616291026200_R26
  doi: 10.1172/JCI108559
– ident: 2022051616291026200_R29
  doi: 10.1172/JCI2629
– ident: 2022051616291026200_R32
  doi: 10.1210/en.2004-1468
– ident: 2022051616291026200_R13
  doi: 10.1096/fj.01-0876rev
– ident: 2022051616291026200_R38
  doi: 10.1210/en.2003-1319
– ident: 2022051616291026200_R2
  doi: 10.1038/sj.ijo.0802502
– ident: 2022051616291026200_R21
  doi: 10.2337/diabetes.53.4.1060
– ident: 2022051616291026200_R1
  doi: 10.1126/science.1104342
– ident: 2022051616291026200_R5
  doi: 10.1152/ajpendo.2001.280.5.E745
– ident: 2022051616291026200_R44
  doi: 10.1152/ajpregu.1995.268.1.R78
– ident: 2022051616291026200_R51
  doi: 10.1038/oby.2005.92
– ident: 2022051616291026200_R12
  doi: 10.1016/j.bbi.2005.04.008
– ident: 2022051616291026200_R19
  doi: 10.2337/db05-1404
– ident: 2022051616291026200_R46
SSID ssj0006060
Score 2.3639674
Snippet Interleukin-6 Directly Increases Glucose Metabolism in Resting Human Skeletal Muscle Stephan Glund 1 , Atul Deshmukh 1 , Yun Chau Long 1 , Theodore Moller 1 ,...
Interleukin (IL)-6 is a proinflammatory cytokine shown to modify insulin sensitivity. Elevated plasma levels of IL-6 are observed in insulin-resistant states....
SourceID swepub
proquest
gale
crossref
pubmed
pascalfrancis
highwire
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1630
SubjectTerms Adipocytes
Adult
Biological and medical sciences
Biological Transport - drug effects
Biopsy
Body fat
Clinical Medicine
Cytokines
Diabetes
Diabetes. Impaired glucose tolerance
Endocrine pancreas. Apud cells (diseases)
Endocrinopathies
Etiopathogenesis. Screening. Investigations. Target tissue resistance
Fundamental and applied biological sciences. Psychology
Genetic
Glucose
Glucose - metabolism
Glycogen - biosynthesis
Humans
Insulin resistance
Interleukin-6
Interleukin-6 - genetics
Interleukin-6 - pharmacology
Interleukin-6/genetics/pharmacology
Kinases
Klinisk medicin
Male
Medical sciences
Medicin och hälsovetenskap
Metabolism
Middle Aged
Muscle
Muscle, Skeletal - cytology
Muscle, Skeletal - drug effects
Muscle, Skeletal - metabolism
Muscles
Musculoskeletal system
Obesity
Phosphatidylinositol 3-Kinases - metabolism
Phosphorylation
Plasma
Polymorphism
Polymorphism, Genetic
Polymorphism, Restriction Fragment Length
Proteins
Reference Values
Restriction Fragment Length
Signal Transduction
Skeletal muscle
Skeletal/cytology/drug effects/metabolism
Striated muscle. Tendons
Tumor necrosis factor-TNF
Vertebrates: osteoarticular system, musculoskeletal system
Title Interleukin-6 Directly Increases Glucose Metabolism in Resting Human Skeletal Muscle
URI http://diabetes.diabetesjournals.org/content/56/6/1630.abstract
https://www.ncbi.nlm.nih.gov/pubmed/17363741
https://www.proquest.com/docview/216480377/abstract/
https://search.proquest.com/docview/20406797
https://search.proquest.com/docview/70555632
https://gup.ub.gu.se/publication/267982
http://kipublications.ki.se/Default.aspx?queryparsed=id:115529383
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELbGJiFeEL8pG8VC03iKWtuJ7TyhUW2dEB1obNLerDixq6olLaR54L_nrk5aBRUeGlXxV8e5ns_n8_kzIaeFclnGLY-45yqKJcsjm0sZOW1TPPLK2xh3I0-u5dVd_Pk-uT8g43YvDKZVtjZxY6iLZY4x8gEHv14PhVKDzGIQIF8PPq5-Rnh8FC6zNmdpPCBHjINXAYqt7rczryF46WEvCuPIx6kCxRAXQg0KiwfRKCE6A1NrnlvOYEyZzCqQmg_HXezzR_8iG90MUJdPyOPGs6TnQRWekgNXPiMPJ83a-XNyuwn-LVw9n5WRpMHWLX5TsBCYmO4qOg7p63Ti1qAai1n1g85KeoM8HOWUbsL99Pscxilw2OmkruAxL8jd5cXt6CpqzlSIcqXEOoq98CrlTFieaBggnfQ2sbEaFtIym7oYIxyZYgUuhzLt8lh6z7wsoOu6wnnxkhyWy9K9JjTOVOqLPOFKpjFXSWq1glpg_ua80izpkfetQM0qUGcYmHKg1A1K3aDUe-QMRW2QiqLEXJc8xEsMNHr01ZzDv57AjCYdQm1d4DSrq8ro8ZcO6EMD8kvUkazZYwANRpqrDvKsg5wGku99wJMOEHpf3ik-bXXEtNHy3ZdEGnhNKQDW7-jPTiBa40oYAI5bhTKNFanMVud75N22FBuAiXGlW9YAASMsQaP_jUC6pEQK3iOvgp7unq2EFOBRgiyC4m5LkHN8Wq8M3JrWpnKG42IdVMH3AHGkN839-Qw_-AuG3H6p0OLNf9_smDxqMzCH7IQcrn_V7i24eWvb33RhuOoR65OjTxfX327-ANW9VB0
link.rule.ids 230,315,786,790,891,12083,12250,21416,27957,27958,31754,31755,33301,33302,33779,33780,43345,43614,43840,74102,74371,74659
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwELZgSMAL4jdlY7PQNJ6iNXZiJ09oqtgKNEOCTtqbFSd2VLWkZUke-O-5i5NWQYWHSlX8NXGu57vz-fyZkNNcmjRlmnnMMukFws88nQnhmUjHeOSV1QHuRk6uxfQm-HIb3na1OVVXVtnbxNZQ5-sMc-TnDOL6aMyl_Lj55eGhUbi42p2gcZ88CDj4GdwoPtlVeEBs7nag-AxZOKUjFmKcy_Nc4_EzkvOBO-qNcs8UjIWSaQWysu6Qi31R6F8Uo61bunxKnnTxJL1wCvCM3DPlc_Iw6VbMX5B5m_JbmWa5KD1BnYVb_aZgF7Ac3VT0yhWt08TUoBCrRfWTLkr6Hdk3yoK2SX76YwneCcJ0mjQVPOYlubn8NJ9Mve4kBS-TktdeYLmVMfO5ZmEEbtEIq0MdyHEutK9jE2BeI5V-jougfmSyQFjrW5HDgDW5sfwVOSjXpXlDaJDK2OZZyKSIAybDWEcS7gKzNmNl5Icj8r4XqNo4wgwFEw2UukKpK5T6iJyhqBUSUJRY4ZK5LImCTk--qQv4r0OYx8RjuNsQWKRNVanoajYAfehAdl3fpVna7SyADiO51QB5NkAWjtp7H_BoAIQxlw2aT3sdUX2OfPclFApeU3CAHQ_0ZyeQKML1LwAc9gqlOttRqa2mj8jJthU7gOVwpVk3AAHTK0Cj_41AkqRQcDYir52e7p4tueAQR4IsnOJuW5BpvGg2Ci4VjaqMYrhEB7dge4Do31V3fbnAD_7CR0a_mEf87X_f7IQ8ms6TmZp9vv56SB73NZhj_4gc1HeNeQeBXq2P2-H8BxPeULQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fT9swELY2kNBepv2mwMCaEHuK2tiJnTxNjFHYRjvEQOLNihO7qtqlhTQP--93VzutMnV7qBTFXx3ncj6fz-fPhBwX0mQZ0yxglskgEmEe6FyIwCQ6xSOvrI5wN_JgKC7vom_38b2nFKp8WmVjE5eGupjlGCPvMvDrkx6Xsmt9VsT1l_6n-UOAB0jhQqs_TeMp2ZaRiEHBtz-fD69vVmYZPHW3HyVkyMkpHc0Q41x2C42H0UjOW4NTY6Ib3mBMm8wqkJx1R15s8kn_IhxdDlL9F-S59y7pqVOHl-SJKV-RnYFfP39NbpcBwKmpJ-MyENTZu-lvClYCk9NNRS9cCjsdmAWox3Rc_aLjkt4gF0c5osuQP_05gbEKnHY6qCt4zBty1z-_PbsM_LkKQS4lXwSR5VamLOSaxQkMkkZYHetI9gqhQ52aCKMcmQwLXBINE5NHwtrQigK6rymM5W_JVjkrzS6hUSZTW-QxkyKNmIxTnUioBeZwxsokjDvkQyNQNXf0GQqmHSh1hVJXKPUOOUFRK6SjKPHL5i5moqDRZz_UKXz5GGY1aQ9qawNHWV1VKrm4aoE-epCdLR6zPPP7DKDBSHXVQp60kCNH9L0JeNACQg_MW8XHjY6oJmK-voiFgtcUHGCHLf1ZCyRJcDUMAPuNQilvSSq10vsOOVqVYgMwOa40sxogYIgFaPS_EUiZFAvOOuSd09P1syUXHLxKkIVT3FUJ8o6P6rmCW6NaVUYxXLCDKtgGII72yt-fjPGH_wiR3y_lCd_775sdkR3oy-rq6_D7PnnWJGT2wgOytXiszXvw-hb60PfnP08_Vow
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interleukin-6+Directly+Increases+Glucose+Metabolism+in+Resting+Human+Skeletal+Muscle&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Glund%2C+Stephan&rft.au=Deshmukh%2C+Atul&rft.au=Yun+Chau+Long&rft.au=Moller%2C+Theodore&rft.date=2007-06-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.eissn=1939-327X&rft.volume=56&rft.issue=6&rft.spage=1630&rft_id=info:doi/10.2337%2Fdb06-1733&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=1295533381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon