Frequent Patterns Mining

Frequent pattern mining has been an important subject matter in data mining from many years. A remarkable progress in this field has been made and lots of efficient algorithms have been designed to search frequent patterns in a transactional database. One of the most important technique of dataminin...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Scientific Research in Computer Science, Engineering and Information Technology pp. 21 - 29
Main Authors Fakir, Y., Elayachi, R.
Format Journal Article
LanguageEnglish
Published 10.07.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:Frequent pattern mining has been an important subject matter in data mining from many years. A remarkable progress in this field has been made and lots of efficient algorithms have been designed to search frequent patterns in a transactional database. One of the most important technique of datamining is the extraction rule in large database. The time required for generating frequent itemsets plays an important role. This paper provides a comparative study of algorithms Eclat, Apriori and FP-Growth. The performance of these algorithms is compared according to the efficiency of the time and memory usage. This study also focuses on each of the algorithm’s strengths and weaknesses for finding patterns among large item sets in database systems.
ISSN:2456-3307
2456-3307
DOI:10.32628/CSEIT2063230