基于AOD数据的新疆大型露天煤炭开采区PM2.5和PM10反演
MODIS气溶胶产品AOD与PM2.5、PM10浓度高度相关,已广泛应用在PM2.5、PM10浓度模拟。该研究以新疆维吾尔自治区大型露天煤炭开采区准东矿区为研究对象,结合实测的2014年5月、7月、9月、12月PM2.5、PM10质量浓度数据与经过垂直湿度订正的MODIS气溶胶产品AOD,利用多元回归进行拟合建模,从建立的40个模型中选取最优模型并据此对研究区PM2.5、PM10的质量浓度进行定量估算。结果表明:AOD与PM2.5、PM10呈极显著正相关;4个月AOD与PM2.5、PM10质量浓度估算模型最优模型均为多项式模型;其中7月AOD与PM2.5质量浓度拟合模型较好(R2=0.625...
Saved in:
Published in | 农业工程学报 Vol. 33; no. 19; pp. 216 - 222 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
新疆大学资源与环境科学学院,乌鲁木齐,830046%新疆大学绿洲生态教育部重点实验室,乌鲁木齐,830046
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1002-6819 |
DOI | 10.11975/j.issn.1002-6819.2017.19.028 |
Cover
Loading…
Abstract | MODIS气溶胶产品AOD与PM2.5、PM10浓度高度相关,已广泛应用在PM2.5、PM10浓度模拟。该研究以新疆维吾尔自治区大型露天煤炭开采区准东矿区为研究对象,结合实测的2014年5月、7月、9月、12月PM2.5、PM10质量浓度数据与经过垂直湿度订正的MODIS气溶胶产品AOD,利用多元回归进行拟合建模,从建立的40个模型中选取最优模型并据此对研究区PM2.5、PM10的质量浓度进行定量估算。结果表明:AOD与PM2.5、PM10呈极显著正相关;4个月AOD与PM2.5、PM10质量浓度估算模型最优模型均为多项式模型;其中7月AOD与PM2.5质量浓度拟合模型较好(R2=0.625 8),实测值与预测值拟合趋势线R2为0.805 7;9月PM10拟合模型效果理想(R2=0.732 9),实测值与预测值拟合趋势线R2为0.807 7;将AOD代入最优模型反演PM2.5,从空间层面上反映出各区域PM2.5浓度差异明显。研究结果可为AOD的深度利用与PM2.5、PM10浓度的遥感估算提供参考,在大气污染物空间分布、监测大气环境质量、污染预测等方面都具有重要意义。 |
---|---|
AbstractList | MODIS气溶胶产品AOD与PM2.5、PM10浓度高度相关,已广泛应用在PM2.5、PM10浓度模拟。该研究以新疆维吾尔自治区大型露天煤炭开采区准东矿区为研究对象,结合实测的2014年5月、7月、9月、12月PM2.5、PM10质量浓度数据与经过垂直湿度订正的MODIS气溶胶产品AOD,利用多元回归进行拟合建模,从建立的40个模型中选取最优模型并据此对研究区PM2.5、PM10的质量浓度进行定量估算。结果表明:AOD与PM2.5、PM10呈极显著正相关;4个月AOD与PM2.5、PM10质量浓度估算模型最优模型均为多项式模型;其中7月AOD与PM2.5质量浓度拟合模型较好(R2=0.625 8),实测值与预测值拟合趋势线R2为0.805 7;9月PM10拟合模型效果理想(R2=0.732 9),实测值与预测值拟合趋势线R2为0.807 7;将AOD代入最优模型反演PM2.5,从空间层面上反映出各区域PM2.5浓度差异明显。研究结果可为AOD的深度利用与PM2.5、PM10浓度的遥感估算提供参考,在大气污染物空间分布、监测大气环境质量、污染预测等方面都具有重要意义。 P407; MODIS气溶胶产品AOD与PM2.5、PM10浓度高度相关,已广泛应用在PM2.5、PM10浓度模拟.该研究以新疆维吾尔自治区大型露天煤炭开采区准东矿区为研究对象,结合实测的2014年5月、7月、9月、12月PM2.5、PM10质量浓度数据与经过垂直湿度订正的MODIS气溶胶产品AOD,利用多元回归进行拟合建模,从建立的40个模型中选取最优模型并据此对研究区PM2.5、PM10的质量浓度进行定量估算.结果表明:AOD与PM2.5、PM10呈极显著正相关;4个月AOD与PM2.5、PM10质量浓度估算模型最优模型均为多项式模型;其中7月AOD与PM2.5质量浓度拟合模型较好(R2=0.6258),实测值与预测值拟合趋势线R2为0.8057;9月PM10拟合模型效果理想(R2=0.7329),实测值与预测值拟合趋势线R2为0.8077;将AOD代入最优模型反演PM2.5,从空间层面上反映出各区域PM2.5浓度差异明显.研究结果可为AOD的深度利用与PM2.5、PM10浓度的遥感估算提供参考,在大气污染物空间分布、监测大气环境质量、污染预测等方面都具有重要意义. |
Abstract_FL | Due to the high efficiency, large scale, low cost, and some other advantages, satellite remote sensing technology can cover the shortage of traditional ground-based observations, which can reflect the distribution, transmission path and diffusion dynamic of atmospheric pollutants in large scale. The MODIS aerosol product i.e. aerosol optical depth (AOD) and PM2.5 and PM10 (aerosol particulate with the diameter of less than 2.5 and 10 μm, respectively) had a high correlation, and AOD has been applied into the quantitative simulation of PM2.5 and PM10 concentration in existing researches. However, it is hard to estimate the PM2.5 and PM10 concentration with high precision, because of the temporal and spatial differences of AOD. The pretreatment of the vertical humidity correction for MODIS aerosol products can eliminate the influence of uncertainties in the atmosphere to a certain extent, and improve the precision and robustness of the quantitative estimation. Therefore, this study aimed to bring the vertical humidity correction into the preprocessing of MODIS aerosol product AOD. With 52 atmospheric dust samples collected from the Zhundong Industrial Park in Xinjiang Uighur Autonomous Region, China, the AOD and the concentration of PM2.5 and PM10 obtained in May, July, September, and December of 2014 were combined to establish the multiple regression fitting model. A total of 40 quantitative models were established, and the model based on polynomial was more robust and accurate than the others, which was applied to predict the concentration of PM2.5 and PM10 of Zhundong Industrial Park. Finally, the optimal fitting models were applied in the prediction of local inhalable particulate matter concentration in May, July, September, and December of 2014. Taking the case of PM2.5, multiple regression model and AOD were used to estimate the local PM2.5 mass concentration, the spatial representation of which was conducted by ArcGIS 10.0. The results showed that: The mass concentrations of PM2.5 and PM10 in the study area were inhomogeneous, and the concentration level of PM10 was much higher than that of PM2.5; and the variations of them were significant. AOD was significantly related with PM2.5 and PM10, separately (P<0.01). The optimal predicting models between AOD and the concentration of PM2.5, PM10 in each month (May, July, September, and December) were the polynomial models. The R2 of the estimation model between AOD and the concentration of PM2.5 reached 0.6258 in July and the R2 of the trend line fitted between measured value and predicting value was 0.8057; the R2 of the estimation model between AOD and the concentration of PM10 was 0.7329 in September, and the R2 of the trend line fitted between measured value and predictive value was 0.8077. The optimal model was applied with AOD to invert the concentration of PM2.5, which could reflect the spatial distribution characteristics and variations of PM2.5 mass concentration in the Zhundong Industrial Park. This research can provide reference for the deep utilization of AOD and the estimation of PM2.5 and PM10 concentrations by means of remote sensing method, which has important significance in spatial distribution, remote sensing monitoring, and the forecasting of local atmospheric pollutants. |
Author | 郭婉臻 夏楠 塔西甫拉提·特依拜 王敬哲 尼格拉·塔什甫拉提 杨春 |
AuthorAffiliation | 新疆大学资源与环境科学学院;新疆大学绿洲生态教育部重点实验室 |
AuthorAffiliation_xml | – name: 新疆大学资源与环境科学学院,乌鲁木齐,830046%新疆大学绿洲生态教育部重点实验室,乌鲁木齐,830046 |
Author_FL | Xia Nan Tashpolat Tiyip Yang Chun Wang Jingzhe Nigara Tashpolat Guo Wanzhen |
Author_FL_xml | – sequence: 1 fullname: Guo Wanzhen – sequence: 2 fullname: Xia Nan – sequence: 3 fullname: Tashpolat Tiyip – sequence: 4 fullname: Wang Jingzhe – sequence: 5 fullname: Nigara Tashpolat – sequence: 6 fullname: Yang Chun |
Author_xml | – sequence: 1 fullname: 郭婉臻 夏楠 塔西甫拉提·特依拜 王敬哲 尼格拉·塔什甫拉提 杨春 |
BookMark | eNo9j81Kw0AcxPdQwap9DPGUuJvkvx_HUusHtLSH3stmk9QU3WqDaG8iag-2CqI9iOilIB6U4rH0cUxC38JIxcMwMPyYYVZQTne0j9A6wSYhgsFm2wyjSJsEY8ugnAjTwoSZmWOL51D-P19GhSgKXQzEZhg7JI_K8ev0e3pbrG0lj5Nk-Jk-XSajSTq6jsdv8cvN_PkrHr-nV-P04iOenc_7_XgwrVctE-L7Qb1KcHw3TGYPa2gpkAeRX_jzVdTYLjdKu0altrNXKlYMxSg3lOWRwAduexSo7wrJBVCmlAwYeA7hGASR0pXg-gDSo5ZSlpSUB1gK6XJmr6KNRe2p1IHUrWa7c9LV2WBT91rqzP19TUT2OSPtBan2O7p1HGbsUTc8lN1ek3EuGOEA2OGOAMjEHA4YqP0D3uJzxw |
ClassificationCodes | P407 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.11975/j.issn.1002-6819.2017.19.028 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitle_FL | Inversion of PM2.5 and PM10 content based on AOD data in large opencast coal mining area of Xinjiang |
EndPage | 222 |
ExternalDocumentID | nygcxb201719028 78897185504849554957485056 |
GrantInformation_xml | – fundername: 国家科技支撑项目; 新疆大学博士科研启动基金项目 funderid: (2014BAC15B01); (BS150246) |
GroupedDBID | -04 2B. 2B~ 2RA 5XA 5XE 92G 92I 92L ABDBF ABJNI ACGFO ACGFS AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CCEZO CHDYS CQIGP CW9 EOJEC FIJ IPNFZ OBODZ RIG TCJ TGD TUS U1G U5N ~WA 4A8 93N ACUHS PSX |
ID | FETCH-LOGICAL-c768-c2d1fe583d656eb9a89567ccaf75d4180591aaba5be55ad62cc2aa68f0a9ab873 |
ISSN | 1002-6819 |
IngestDate | Thu May 29 04:08:34 EDT 2025 Wed Feb 14 09:57:35 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 19 |
Keywords | 气溶胶 PM2.5 PM10 remote sensing 遥感 pollution MODIS 污染 气溶胶光学厚度 aerosol aerosol optical depth |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c768-c2d1fe583d656eb9a89567ccaf75d4180591aaba5be55ad62cc2aa68f0a9ab873 |
Notes | 11-2047/S |
PageCount | 7 |
ParticipantIDs | wanfang_journals_nygcxb201719028 chongqing_primary_78897185504849554957485056 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 农业工程学报 |
PublicationTitleAlternate | Transactions of the Chinese Society of Agricultural Engineering |
PublicationTitle_FL | Transactions of the Chinese Society of Agricultural Engineering |
PublicationYear | 2017 |
Publisher | 新疆大学资源与环境科学学院,乌鲁木齐,830046%新疆大学绿洲生态教育部重点实验室,乌鲁木齐,830046 |
Publisher_xml | – name: 新疆大学资源与环境科学学院,乌鲁木齐,830046%新疆大学绿洲生态教育部重点实验室,乌鲁木齐,830046 |
SSID | ssib051370041 ssib017478172 ssj0041925 ssib001101065 ssib023167668 |
Score | 2.1515455 |
Snippet | ... P407;... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 216 |
SubjectTerms | 遥感;污染;气溶胶;MODIS;PM2.5;PM10;气溶胶光学厚度 |
Title | 基于AOD数据的新疆大型露天煤炭开采区PM2.5和PM10反演 |
URI | http://lib.cqvip.com/qk/90712X/201719/78897185504849554957485056.html https://d.wanfangdata.com.cn/periodical/nygcxb201719028 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB5iAqIH8YnxRQ72zV1neqd7uo89u7MEIZpDhNyWecbTRmMCmpOImoOJgmgOIooQEA9K8Bjyc9xd8i-squl9RMUkQpg0XdVVX1f1dncN3TWOcz1zi0Ln2q1kscgqfp65FZXnaUVkvKglbuHn9Lm3mdty-q5_a17Mj41_Hjm1tLKcVNPVv94r-R-vQh34FW_JHsGzA6FQAWXwLzzBw_A8lI9ZJJhustCwyMenisydBosk04KFLhZUg5mIRQHTQPWJJIkUYEFJlGB8ZgISFTEVskgzXWch75M0MisqY4Ez00BSWMdDEsCsAvyDGgWtzOwMrwoSxqFidsZzidREJKAdWpVfG-5viIkqUSN2QSFOFB4wI1CdUQRJoFIjqUcGSP1hQvprFhEgVQBWIZwwHLIQdEAAjUGocfdRPMCDbYASNsks0OWQFIUkTmJT7bI6R1RoAc1CTWgjphuWU9eHUoGlNCT5wdTJGjWw6OgblvIqKf0aDvCK7bliobAuBE8DoNJeKrIKTZOYOdoDDQeivJHmgwJ4VyMbLy2u0W1QCf5WHiGpo9GxpoFaeF1htjTJuDgcTrQ9mRI4fRpGZFNNNTBirBaBMNBXnHhKN6r-eGrYoYaGFjiCYWgCyRhCSzWg94hdGFl_cYGWyq6idoEuM6X0JyK9b7mVIzs3Xt5w_3NToANBuwJUUR2owHOdQRX-uzY9wf686-3HC-mjBHk8zHB0zJngEInC2j9hwkbYHMYcHr5WGSyKHFNLyGEML7wafkFicO4MT10IOoJhYRx3WB_kzX9BxOQv9xbbCw9gS0s3DNtF3F4Y2QzPnXZO2Sh2ypRT0hlnbPXeWeekWViymXzyc07U-bTzc-cVTEjdd9vdje-998-6m9u9zRedrS-djy_3PvzobH3tPd_qPf3W2X2yt7bWWd-hyaPzZh2njc7rje7u2_POXDOaq09X7DdbKmkgVSXlmVfkQtUyiBPzRMdKCxnAKlEEIvM9BcGcF8dJLJJciDiTPE15HEtVuLGOExXULjjj7cV2ftGZipNC5EEm4wSzQnJX-ypVqfRzCEHS3M0nnRsDe7Tul6l5WoFSGnbbQsDGxNcQKmkR-AqjvElnypqsZWfwh63fXHzpYJbLzgksl-9grzjjy0sr-VWISpaTa3Zc_AIPCN_V |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EAOD%E6%95%B0%E6%8D%AE%E7%9A%84%E6%96%B0%E7%96%86%E5%A4%A7%E5%9E%8B%E9%9C%B2%E5%A4%A9%E7%85%A4%E7%82%AD%E5%BC%80%E9%87%87%E5%8C%BAPM2.5%E5%92%8CPM10%E5%8F%8D%E6%BC%94&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E9%83%AD%E5%A9%89%E8%87%BB&rft.au=%E5%A4%8F%E6%A5%A0&rft.au=%E5%A1%94%E8%A5%BF%E7%94%AB%E6%8B%89%E6%8F%90%C2%B7%E7%89%B9%E4%BE%9D%E6%8B%9C&rft.au=%E7%8E%8B%E6%95%AC%E5%93%B2&rft.date=2017&rft.pub=%E6%96%B0%E7%96%86%E5%A4%A7%E5%AD%A6%E8%B5%84%E6%BA%90%E4%B8%8E%E7%8E%AF%E5%A2%83%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E4%B9%8C%E9%B2%81%E6%9C%A8%E9%BD%90%2C830046%25%E6%96%B0%E7%96%86%E5%A4%A7%E5%AD%A6%E7%BB%BF%E6%B4%B2%E7%94%9F%E6%80%81%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E4%B9%8C%E9%B2%81%E6%9C%A8%E9%BD%90%2C830046&rft.issn=1002-6819&rft.volume=33&rft.issue=19&rft.spage=216&rft.epage=222&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.19.028&rft.externalDocID=nygcxb201719028 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg |