基于AOD数据的新疆大型露天煤炭开采区PM2.5和PM10反演

MODIS气溶胶产品AOD与PM2.5、PM10浓度高度相关,已广泛应用在PM2.5、PM10浓度模拟。该研究以新疆维吾尔自治区大型露天煤炭开采区准东矿区为研究对象,结合实测的2014年5月、7月、9月、12月PM2.5、PM10质量浓度数据与经过垂直湿度订正的MODIS气溶胶产品AOD,利用多元回归进行拟合建模,从建立的40个模型中选取最优模型并据此对研究区PM2.5、PM10的质量浓度进行定量估算。结果表明:AOD与PM2.5、PM10呈极显著正相关;4个月AOD与PM2.5、PM10质量浓度估算模型最优模型均为多项式模型;其中7月AOD与PM2.5质量浓度拟合模型较好(R2=0.625...

Full description

Saved in:
Bibliographic Details
Published in农业工程学报 Vol. 33; no. 19; pp. 216 - 222
Main Author 郭婉臻 夏楠 塔西甫拉提·特依拜 王敬哲 尼格拉·塔什甫拉提 杨春
Format Journal Article
LanguageChinese
Published 新疆大学资源与环境科学学院,乌鲁木齐,830046%新疆大学绿洲生态教育部重点实验室,乌鲁木齐,830046 2017
Subjects
Online AccessGet full text
ISSN1002-6819
DOI10.11975/j.issn.1002-6819.2017.19.028

Cover

Loading…
Abstract MODIS气溶胶产品AOD与PM2.5、PM10浓度高度相关,已广泛应用在PM2.5、PM10浓度模拟。该研究以新疆维吾尔自治区大型露天煤炭开采区准东矿区为研究对象,结合实测的2014年5月、7月、9月、12月PM2.5、PM10质量浓度数据与经过垂直湿度订正的MODIS气溶胶产品AOD,利用多元回归进行拟合建模,从建立的40个模型中选取最优模型并据此对研究区PM2.5、PM10的质量浓度进行定量估算。结果表明:AOD与PM2.5、PM10呈极显著正相关;4个月AOD与PM2.5、PM10质量浓度估算模型最优模型均为多项式模型;其中7月AOD与PM2.5质量浓度拟合模型较好(R2=0.625 8),实测值与预测值拟合趋势线R2为0.805 7;9月PM10拟合模型效果理想(R2=0.732 9),实测值与预测值拟合趋势线R2为0.807 7;将AOD代入最优模型反演PM2.5,从空间层面上反映出各区域PM2.5浓度差异明显。研究结果可为AOD的深度利用与PM2.5、PM10浓度的遥感估算提供参考,在大气污染物空间分布、监测大气环境质量、污染预测等方面都具有重要意义。
AbstractList MODIS气溶胶产品AOD与PM2.5、PM10浓度高度相关,已广泛应用在PM2.5、PM10浓度模拟。该研究以新疆维吾尔自治区大型露天煤炭开采区准东矿区为研究对象,结合实测的2014年5月、7月、9月、12月PM2.5、PM10质量浓度数据与经过垂直湿度订正的MODIS气溶胶产品AOD,利用多元回归进行拟合建模,从建立的40个模型中选取最优模型并据此对研究区PM2.5、PM10的质量浓度进行定量估算。结果表明:AOD与PM2.5、PM10呈极显著正相关;4个月AOD与PM2.5、PM10质量浓度估算模型最优模型均为多项式模型;其中7月AOD与PM2.5质量浓度拟合模型较好(R2=0.625 8),实测值与预测值拟合趋势线R2为0.805 7;9月PM10拟合模型效果理想(R2=0.732 9),实测值与预测值拟合趋势线R2为0.807 7;将AOD代入最优模型反演PM2.5,从空间层面上反映出各区域PM2.5浓度差异明显。研究结果可为AOD的深度利用与PM2.5、PM10浓度的遥感估算提供参考,在大气污染物空间分布、监测大气环境质量、污染预测等方面都具有重要意义。
P407; MODIS气溶胶产品AOD与PM2.5、PM10浓度高度相关,已广泛应用在PM2.5、PM10浓度模拟.该研究以新疆维吾尔自治区大型露天煤炭开采区准东矿区为研究对象,结合实测的2014年5月、7月、9月、12月PM2.5、PM10质量浓度数据与经过垂直湿度订正的MODIS气溶胶产品AOD,利用多元回归进行拟合建模,从建立的40个模型中选取最优模型并据此对研究区PM2.5、PM10的质量浓度进行定量估算.结果表明:AOD与PM2.5、PM10呈极显著正相关;4个月AOD与PM2.5、PM10质量浓度估算模型最优模型均为多项式模型;其中7月AOD与PM2.5质量浓度拟合模型较好(R2=0.6258),实测值与预测值拟合趋势线R2为0.8057;9月PM10拟合模型效果理想(R2=0.7329),实测值与预测值拟合趋势线R2为0.8077;将AOD代入最优模型反演PM2.5,从空间层面上反映出各区域PM2.5浓度差异明显.研究结果可为AOD的深度利用与PM2.5、PM10浓度的遥感估算提供参考,在大气污染物空间分布、监测大气环境质量、污染预测等方面都具有重要意义.
Abstract_FL Due to the high efficiency, large scale, low cost, and some other advantages, satellite remote sensing technology can cover the shortage of traditional ground-based observations, which can reflect the distribution, transmission path and diffusion dynamic of atmospheric pollutants in large scale. The MODIS aerosol product i.e. aerosol optical depth (AOD) and PM2.5 and PM10 (aerosol particulate with the diameter of less than 2.5 and 10 μm, respectively) had a high correlation, and AOD has been applied into the quantitative simulation of PM2.5 and PM10 concentration in existing researches. However, it is hard to estimate the PM2.5 and PM10 concentration with high precision, because of the temporal and spatial differences of AOD. The pretreatment of the vertical humidity correction for MODIS aerosol products can eliminate the influence of uncertainties in the atmosphere to a certain extent, and improve the precision and robustness of the quantitative estimation. Therefore, this study aimed to bring the vertical humidity correction into the preprocessing of MODIS aerosol product AOD. With 52 atmospheric dust samples collected from the Zhundong Industrial Park in Xinjiang Uighur Autonomous Region, China, the AOD and the concentration of PM2.5 and PM10 obtained in May, July, September, and December of 2014 were combined to establish the multiple regression fitting model. A total of 40 quantitative models were established, and the model based on polynomial was more robust and accurate than the others, which was applied to predict the concentration of PM2.5 and PM10 of Zhundong Industrial Park. Finally, the optimal fitting models were applied in the prediction of local inhalable particulate matter concentration in May, July, September, and December of 2014. Taking the case of PM2.5, multiple regression model and AOD were used to estimate the local PM2.5 mass concentration, the spatial representation of which was conducted by ArcGIS 10.0. The results showed that: The mass concentrations of PM2.5 and PM10 in the study area were inhomogeneous, and the concentration level of PM10 was much higher than that of PM2.5; and the variations of them were significant. AOD was significantly related with PM2.5 and PM10, separately (P<0.01). The optimal predicting models between AOD and the concentration of PM2.5, PM10 in each month (May, July, September, and December) were the polynomial models. The R2 of the estimation model between AOD and the concentration of PM2.5 reached 0.6258 in July and the R2 of the trend line fitted between measured value and predicting value was 0.8057; the R2 of the estimation model between AOD and the concentration of PM10 was 0.7329 in September, and the R2 of the trend line fitted between measured value and predictive value was 0.8077. The optimal model was applied with AOD to invert the concentration of PM2.5, which could reflect the spatial distribution characteristics and variations of PM2.5 mass concentration in the Zhundong Industrial Park. This research can provide reference for the deep utilization of AOD and the estimation of PM2.5 and PM10 concentrations by means of remote sensing method, which has important significance in spatial distribution, remote sensing monitoring, and the forecasting of local atmospheric pollutants.
Author 郭婉臻 夏楠 塔西甫拉提·特依拜 王敬哲 尼格拉·塔什甫拉提 杨春
AuthorAffiliation 新疆大学资源与环境科学学院;新疆大学绿洲生态教育部重点实验室
AuthorAffiliation_xml – name: 新疆大学资源与环境科学学院,乌鲁木齐,830046%新疆大学绿洲生态教育部重点实验室,乌鲁木齐,830046
Author_FL Xia Nan
Tashpolat Tiyip
Yang Chun
Wang Jingzhe
Nigara Tashpolat
Guo Wanzhen
Author_FL_xml – sequence: 1
  fullname: Guo Wanzhen
– sequence: 2
  fullname: Xia Nan
– sequence: 3
  fullname: Tashpolat Tiyip
– sequence: 4
  fullname: Wang Jingzhe
– sequence: 5
  fullname: Nigara Tashpolat
– sequence: 6
  fullname: Yang Chun
Author_xml – sequence: 1
  fullname: 郭婉臻 夏楠 塔西甫拉提·特依拜 王敬哲 尼格拉·塔什甫拉提 杨春
BookMark eNo9j81Kw0AcxPdQwap9DPGUuJvkvx_HUusHtLSH3stmk9QU3WqDaG8iag-2CqI9iOilIB6U4rH0cUxC38JIxcMwMPyYYVZQTne0j9A6wSYhgsFm2wyjSJsEY8ugnAjTwoSZmWOL51D-P19GhSgKXQzEZhg7JI_K8ev0e3pbrG0lj5Nk-Jk-XSajSTq6jsdv8cvN_PkrHr-nV-P04iOenc_7_XgwrVctE-L7Qb1KcHw3TGYPa2gpkAeRX_jzVdTYLjdKu0altrNXKlYMxSg3lOWRwAduexSo7wrJBVCmlAwYeA7hGASR0pXg-gDSo5ZSlpSUB1gK6XJmr6KNRe2p1IHUrWa7c9LV2WBT91rqzP19TUT2OSPtBan2O7p1HGbsUTc8lN1ek3EuGOEA2OGOAMjEHA4YqP0D3uJzxw
ClassificationCodes P407
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.11975/j.issn.1002-6819.2017.19.028
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitle_FL Inversion of PM2.5 and PM10 content based on AOD data in large opencast coal mining area of Xinjiang
EndPage 222
ExternalDocumentID nygcxb201719028
78897185504849554957485056
GrantInformation_xml – fundername: 国家科技支撑项目; 新疆大学博士科研启动基金项目
  funderid: (2014BAC15B01); (BS150246)
GroupedDBID -04
2B.
2B~
2RA
5XA
5XE
92G
92I
92L
ABDBF
ABJNI
ACGFO
ACGFS
AEGXH
AIAGR
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CHDYS
CQIGP
CW9
EOJEC
FIJ
IPNFZ
OBODZ
RIG
TCJ
TGD
TUS
U1G
U5N
~WA
4A8
93N
ACUHS
PSX
ID FETCH-LOGICAL-c768-c2d1fe583d656eb9a89567ccaf75d4180591aaba5be55ad62cc2aa68f0a9ab873
ISSN 1002-6819
IngestDate Thu May 29 04:08:34 EDT 2025
Wed Feb 14 09:57:35 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 19
Keywords 气溶胶
PM2.5
PM10
remote sensing
遥感
pollution
MODIS
污染
气溶胶光学厚度
aerosol
aerosol optical depth
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c768-c2d1fe583d656eb9a89567ccaf75d4180591aaba5be55ad62cc2aa68f0a9ab873
Notes 11-2047/S
PageCount 7
ParticipantIDs wanfang_journals_nygcxb201719028
chongqing_primary_78897185504849554957485056
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 农业工程学报
PublicationTitleAlternate Transactions of the Chinese Society of Agricultural Engineering
PublicationTitle_FL Transactions of the Chinese Society of Agricultural Engineering
PublicationYear 2017
Publisher 新疆大学资源与环境科学学院,乌鲁木齐,830046%新疆大学绿洲生态教育部重点实验室,乌鲁木齐,830046
Publisher_xml – name: 新疆大学资源与环境科学学院,乌鲁木齐,830046%新疆大学绿洲生态教育部重点实验室,乌鲁木齐,830046
SSID ssib051370041
ssib017478172
ssj0041925
ssib001101065
ssib023167668
Score 2.1515455
Snippet ...
P407;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 216
SubjectTerms 遥感;污染;气溶胶;MODIS;PM2.5;PM10;气溶胶光学厚度
Title 基于AOD数据的新疆大型露天煤炭开采区PM2.5和PM10反演
URI http://lib.cqvip.com/qk/90712X/201719/78897185504849554957485056.html
https://d.wanfangdata.com.cn/periodical/nygcxb201719028
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxRBEB5iAqIH8YnxRQ72zV1neqd7uo89u7MEIZpDhNyWecbTRmMCmpOImoOJgmgOIooQEA9K8Bjyc9xd8i-squl9RMUkQpg0XdVVX1f1dncN3TWOcz1zi0Ln2q1kscgqfp65FZXnaUVkvKglbuHn9Lm3mdty-q5_a17Mj41_Hjm1tLKcVNPVv94r-R-vQh34FW_JHsGzA6FQAWXwLzzBw_A8lI9ZJJhustCwyMenisydBosk04KFLhZUg5mIRQHTQPWJJIkUYEFJlGB8ZgISFTEVskgzXWch75M0MisqY4Ez00BSWMdDEsCsAvyDGgWtzOwMrwoSxqFidsZzidREJKAdWpVfG-5viIkqUSN2QSFOFB4wI1CdUQRJoFIjqUcGSP1hQvprFhEgVQBWIZwwHLIQdEAAjUGocfdRPMCDbYASNsks0OWQFIUkTmJT7bI6R1RoAc1CTWgjphuWU9eHUoGlNCT5wdTJGjWw6OgblvIqKf0aDvCK7bliobAuBE8DoNJeKrIKTZOYOdoDDQeivJHmgwJ4VyMbLy2u0W1QCf5WHiGpo9GxpoFaeF1htjTJuDgcTrQ9mRI4fRpGZFNNNTBirBaBMNBXnHhKN6r-eGrYoYaGFjiCYWgCyRhCSzWg94hdGFl_cYGWyq6idoEuM6X0JyK9b7mVIzs3Xt5w_3NToANBuwJUUR2owHOdQRX-uzY9wf686-3HC-mjBHk8zHB0zJngEInC2j9hwkbYHMYcHr5WGSyKHFNLyGEML7wafkFicO4MT10IOoJhYRx3WB_kzX9BxOQv9xbbCw9gS0s3DNtF3F4Y2QzPnXZO2Sh2ypRT0hlnbPXeWeekWViymXzyc07U-bTzc-cVTEjdd9vdje-998-6m9u9zRedrS-djy_3PvzobH3tPd_qPf3W2X2yt7bWWd-hyaPzZh2njc7rje7u2_POXDOaq09X7DdbKmkgVSXlmVfkQtUyiBPzRMdKCxnAKlEEIvM9BcGcF8dJLJJciDiTPE15HEtVuLGOExXULjjj7cV2ftGZipNC5EEm4wSzQnJX-ypVqfRzCEHS3M0nnRsDe7Tul6l5WoFSGnbbQsDGxNcQKmkR-AqjvElnypqsZWfwh63fXHzpYJbLzgksl-9grzjjy0sr-VWISpaTa3Zc_AIPCN_V
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8EAOD%E6%95%B0%E6%8D%AE%E7%9A%84%E6%96%B0%E7%96%86%E5%A4%A7%E5%9E%8B%E9%9C%B2%E5%A4%A9%E7%85%A4%E7%82%AD%E5%BC%80%E9%87%87%E5%8C%BAPM2.5%E5%92%8CPM10%E5%8F%8D%E6%BC%94&rft.jtitle=%E5%86%9C%E4%B8%9A%E5%B7%A5%E7%A8%8B%E5%AD%A6%E6%8A%A5&rft.au=%E9%83%AD%E5%A9%89%E8%87%BB&rft.au=%E5%A4%8F%E6%A5%A0&rft.au=%E5%A1%94%E8%A5%BF%E7%94%AB%E6%8B%89%E6%8F%90%C2%B7%E7%89%B9%E4%BE%9D%E6%8B%9C&rft.au=%E7%8E%8B%E6%95%AC%E5%93%B2&rft.date=2017&rft.pub=%E6%96%B0%E7%96%86%E5%A4%A7%E5%AD%A6%E8%B5%84%E6%BA%90%E4%B8%8E%E7%8E%AF%E5%A2%83%E7%A7%91%E5%AD%A6%E5%AD%A6%E9%99%A2%2C%E4%B9%8C%E9%B2%81%E6%9C%A8%E9%BD%90%2C830046%25%E6%96%B0%E7%96%86%E5%A4%A7%E5%AD%A6%E7%BB%BF%E6%B4%B2%E7%94%9F%E6%80%81%E6%95%99%E8%82%B2%E9%83%A8%E9%87%8D%E7%82%B9%E5%AE%9E%E9%AA%8C%E5%AE%A4%2C%E4%B9%8C%E9%B2%81%E6%9C%A8%E9%BD%90%2C830046&rft.issn=1002-6819&rft.volume=33&rft.issue=19&rft.spage=216&rft.epage=222&rft_id=info:doi/10.11975%2Fj.issn.1002-6819.2017.19.028&rft.externalDocID=nygcxb201719028
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F90712X%2F90712X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fnygcxb%2Fnygcxb.jpg