A Toxoplasma gondii pseudokinase inhibits host IRG resistance proteins

The ability of mice to resist infection with the protozoan parasite, Toxoplasma gondii, depends in large part on the function of members of a complex family of atypical large GTPases, the interferon-gamma-inducible immunity-related GTPases (IRG proteins). Nevertheless, some strains of T. gondii are...

Full description

Saved in:
Bibliographic Details
Published inPLoS biology Vol. 10; no. 7; p. e1001358
Main Authors Fleckenstein, Martin C, Reese, Michael L, Könen-Waisman, Stephanie, Boothroyd, John C, Howard, Jonathan C, Steinfeldt, Tobias
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.07.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ability of mice to resist infection with the protozoan parasite, Toxoplasma gondii, depends in large part on the function of members of a complex family of atypical large GTPases, the interferon-gamma-inducible immunity-related GTPases (IRG proteins). Nevertheless, some strains of T. gondii are highly virulent for mice because, as recently shown, they secrete a polymorphic protein kinase, ROP18, from the rhoptries into the host cell cytosol at the moment of cell invasion. Depending on the allele, ROP18 can act as a virulence factor for T. gondii by phosphorylating and thereby inactivating mouse IRG proteins. In this article we show that IRG proteins interact not only with ROP18, but also strongly with the products of another polymorphic locus, ROP5, already implicated as a major virulence factor from genetic crosses, but whose function has previously been a complete mystery. ROP5 proteins are members of the same protein family as ROP18 kinases but are pseudokinases by sequence, structure, and function. We show by a combination of genetic and biochemical approaches that ROP5 proteins act as essential co-factors for ROP18 and present evidence that they work by enforcing an inactive GDP-dependent conformation on the IRG target protein. By doing so they prevent GTP-dependent activation and simultaneously expose the target threonines on the switch I loop for phosphorylation by ROP18, resulting in permanent inactivation of the protein. This represents a novel mechanism in which a pseudokinase facilitates the phosphorylation of a target by a partner kinase by preparing the substrate for phosphorylation, rather than by upregulation of the activity of the kinase itself.
Bibliography:The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: MCF MLR JCB JCH TS. Performed the experiments: MCF MLR SKW TS. Analyzed the data: MCF MLR SKW JCB JCH TS. Contributed reagents/materials/analysis tools: JCB JCH. Wrote the paper: MCF MLR JCB JCH TS.
ISSN:1545-7885
1544-9173
1545-7885
DOI:10.1371/journal.pbio.1001358