Transcription termination and chimeric RNA formation controlled by Arabidopsis thaliana FPA

Alternative cleavage and polyadenylation influence the coding and regulatory potential of mRNAs and where transcription termination occurs. Although widespread, few regulators of this process are known. The Arabidopsis thaliana protein FPA is a rare example of a trans-acting regulator of poly(A) sit...

Full description

Saved in:
Bibliographic Details
Published inPLoS genetics Vol. 9; no. 10; p. e1003867
Main Authors Duc, Céline, Sherstnev, Alexander, Cole, Christian, Barton, Geoffrey J, Simpson, Gordon G
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 01.10.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Alternative cleavage and polyadenylation influence the coding and regulatory potential of mRNAs and where transcription termination occurs. Although widespread, few regulators of this process are known. The Arabidopsis thaliana protein FPA is a rare example of a trans-acting regulator of poly(A) site choice. Analysing fpa mutants therefore provides an opportunity to reveal generic consequences of disrupting this process. We used direct RNA sequencing to quantify shifts in RNA 3' formation in fpa mutants. Here we show that specific chimeric RNAs formed between the exons of otherwise separate genes are a striking consequence of loss of FPA function. We define intergenic read-through transcripts resulting from defective RNA 3' end formation in fpa mutants and detail cryptic splicing and antisense transcription associated with these read-through RNAs. We identify alternative polyadenylation within introns that is sensitive to FPA and show FPA-dependent shifts in IBM1 poly(A) site selection that differ from those recently defined in mutants defective in intragenic heterochromatin and DNA methylation. Finally, we show that defective termination at specific loci in fpa mutants is shared with dicer-like 1 (dcl1) or dcl4 mutants, leading us to develop alternative explanations for some silencing roles of these proteins. We relate our findings to the impact that altered patterns of 3' end formation can have on gene and genome organisation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conceived and designed the experiments: GGS GJB. Performed the experiments: CD. Analyzed the data: CD AS. Contributed reagents/materials/analysis tools: CC CD AS. Wrote the paper: GGS CD.
The authors have declared that no competing interests exist.
ISSN:1553-7404
1553-7390
1553-7404
DOI:10.1371/journal.pgen.1003867