Room-Temperature Ultraviolet Nanowire Nanolasers

Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated. The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process. These wide band-gap semiconductor nanowires form natural...

Full description

Saved in:
Bibliographic Details
Published inScience (American Association for the Advancement of Science) Vol. 292; no. 5523; pp. 1897 - 1899
Main Authors Huang, Michael H., Mao, Samuel, Feick, Henning, Yan, Haoquan, Wu, Yiying, Kind, Hannes, Weber, Eicke, Russo, Richard, Yang, Peidong
Format Journal Article
LanguageEnglish
Published Washington, DC American Society for the Advancement of Science 08.06.2001
American Association for the Advancement of Science
The American Association for the Advancement of Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Room-temperature ultraviolet lasing in semiconductor nanowire arrays has been demonstrated. The self-organized, oriented zinc oxide nanowires grown on sapphire substrates were synthesized with a simple vapor transport and condensation process. These wide band-gap semiconductor nanowires form natural laser cavities with diameters varying from 20 to 150 nanometers and lengths up to 10 micrometers. Under optical excitation, surface-emitting lasing action was observed at 385 nanometers, with an emission linewidth less than 0.3 nanometer. The chemical flexibility and the one-dimensionality of the nanowires make them ideal miniaturized laser light sources. These short-wavelength nanolasers could have myriad applications, including optical computing, information storage, and microanalysis.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0036-8075
1095-9203
DOI:10.1126/science.1060367