Sperm Storage and Artificial Insemination in Honey Bees

To obtain the expected yield from a honeybee colony, queen bee is required to have high egg capacity, the colony is also expected to be resistant to diseases, to have a low tendency for swarming, to be resistant to looting, and to be able to adapt to the climatic conditions of the region. In this co...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Science Letters Vol. 2; no. 1; pp. 12 - 25
Main Authors ÖZKÖK, Arda Onur, SELCUK, Murat
Format Journal Article
LanguageEnglish
Published 01.03.2020
Online AccessGet full text

Cover

Loading…
More Information
Summary:To obtain the expected yield from a honeybee colony, queen bee is required to have high egg capacity, the colony is also expected to be resistant to diseases, to have a low tendency for swarming, to be resistant to looting, and to be able to adapt to the climatic conditions of the region. In this context, it is important to protect the pure bee races and to improve them by conducting breeding research. To maintain the high yield aspect of honeybee colony, the queen bee needs to be replaced at most every 2 years. Queen bee becomes adult in as short as 16 days after hatching, and mating is realized in the air outside the colony, which makes it difficult to preserve the genetic line of the queen bee. At this point, artificial insemination and protection of gene resources become important. Honey bee (Apis mellifera L.) sperm can be stored for short and long periods. However, due to the delicate structure and biology of honey bee sperm, the high success rate in mammals could not be achieved in storing bee sperm. Due to the genetic damage exposed during the freezing of honey bee sperm, long-term storage difficulties are experienced. In addition, the concentration, motility and viability of spermatozoa decrease due to the short-term storage and storage conditions. In the breeding studies in the same region, after a period of time, gene resources decrease, and accordingly, the risk of inbreeding occurs. Instead of replacing the bee colonies that are at risk of inbreeding, a new different genome addition to the colony whose current yield characteristics are known can be made through the sperm storage of other colonies. Thanks to the long-term storage of sperm, long-period genetic studies can be carried out as in mammals, which is important for improving yield characteristics genetically. In addition, the long-term storage of honeybee sperm is a hope for the protection of regional races that are in danger of extinction due to unconsciousness and improper breeding policies.
ISSN:2687-4733
2687-4733
DOI:10.38058/ijsl.661629