Three distinct subsets of thymic epithelial cells in rats and mice defined by novel antibodies
Thymic epithelial cells (TECs) are thought to play an essential role in T cell development and have been detected mainly in mice using lectin binding and antibodies to keratins. Our aim in the present study was to create a precise map of rat TECs using antibodies to putative markers and novel monocl...
Saved in:
Published in | PloS one Vol. 9; no. 10; p. e109995 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
21.10.2014
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Thymic epithelial cells (TECs) are thought to play an essential role in T cell development and have been detected mainly in mice using lectin binding and antibodies to keratins. Our aim in the present study was to create a precise map of rat TECs using antibodies to putative markers and novel monoclonal antibodies (i.e., ED 18/19/21 and anti-CD205 antibodies) and compare it with a map from mouse counterparts and that of rat thymic dendritic cells.
Rat TECs were subdivided on the basis of phenotype into three subsets; ED18+ED19+/-keratin 5 (K5)+K8+CD205+ class II MHC (MHCII)+ cortical TECs (cTECs), ED18+ED21-K5-K8+Ulex europaeus lectin 1 (UEA-1)+CD205- medullary TECs (mTEC1s), and ED18+ED21+K5+K8dullUEA-1-CD205- medullary TECs (mTEC2s). Thymic nurse cells were defined in cytosmears as an ED18+ED19+/-K5+K8+ subset of cTECs. mTEC1s preferentially expressed MHCII, claudin-3, claudin-4, and autoimmune regulator (AIRE). Use of ED18 and ED21 antibodies revealed three subsets of TECs in mice as well. We also detected two distinct TEC-free areas in the subcapsular cortex and in the medulla. Rat dendritic cells in the cortex were MHCII+CD103+ but negative for TEC markers, including CD205. Those in the medulla were MHCII+CD103+ and CD205+ cells were found only in the TEC-free area.
Both rats and mice have three TEC subsets with similar phenotypes that can be identified using known markers and new monoclonal antibodies. These findings will facilitate further analysis of TEC subsets and DCs and help to define their roles in thymic selection and in pathological states such as autoimmune disorders. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: YS KM. Performed the experiments: YS MS. Analyzed the data: YS MS. Contributed reagents/materials/analysis tools: HU CDD CGP YK. Wrote the paper: YS KM HU. Competing Interests: The authors have declared that no competing interests exist. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0109995 |