Thermal Transport Characteristics of Human Skin Measured In Vivo Using Ultrathin Conformal Arrays of Thermal Sensors and Actuators

Measurements of the thermal transport properties of the skin can reveal changes in physical and chemical states of relevance to dermatological health, skin structure and activity, thermoregulation and other aspects of human physiology. Existing methods for in vivo evaluations demand complex systems...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 10; no. 2; p. e0118131
Main Authors Webb, R. Chad, Pielak, Rafal M., Bastien, Philippe, Ayers, Joshua, Niittynen, Juha, Kurniawan, Jonas, Manco, Megan, Lin, Athena, Cho, Nam Heon, Malyrchuk, Viktor, Balooch, Guive, Rogers, John A.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 06.02.2015
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Measurements of the thermal transport properties of the skin can reveal changes in physical and chemical states of relevance to dermatological health, skin structure and activity, thermoregulation and other aspects of human physiology. Existing methods for in vivo evaluations demand complex systems for laser heating and infrared thermography, or they require rigid, invasive probes; neither can apply to arbitrary regions of the body, offers modes for rapid spatial mapping, or enables continuous monitoring outside of laboratory settings. Here we describe human clinical studies using mechanically soft arrays of thermal actuators and sensors that laminate onto the skin to provide rapid, quantitative in vivo determination of both the thermal conductivity and thermal diffusivity, in a completely non-invasive manner. Comprehensive analysis of measurements on six different body locations of each of twenty-five human subjects reveal systematic variations and directional anisotropies in the characteristics, with correlations to the thicknesses of the epidermis (EP) and stratum corneum (SC) determined by optical coherence tomography, and to the water content assessed by electrical impedance based measurements. Multivariate statistical analysis establishes four distinct locations across the body that exhibit different physical properties: heel, cheek, palm, and wrist/volar forearm/dorsal forearm. The data also demonstrate that thermal transport correlates negatively with SC and EP thickness and positively with water content, with a strength of correlation that varies from region to region, e.g., stronger in the palmar than in the follicular regions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
Competing Interests: The authors RMP, PB, MM and GB are employed by L’Oreal, who also provides a portion of the funding for this work. This does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials.
Conceived and designed the experiments: RCW RMP MM GB JAR. Performed the experiments: RCW RMP JA JK AL NHC VM. Analyzed the data: RCW RMP PB JN. Contributed reagents/materials/analysis tools: RCW RMP PB MM VM. Wrote the paper: RCW RMP PB JN GB JAR.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0118131