The Cell Cycle Timing of Human Papillomavirus DNA Replication
Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomeno...
Saved in:
Published in | PloS one Vol. 10; no. 7; p. e0131675 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.07.2015
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Viruses manipulate the cell cycle of the host cell to optimize conditions for more efficient viral genome replication. One strategy utilized by DNA viruses is to replicate their genomes non-concurrently with the host genome; in this case, the viral genome is amplified outside S phase. This phenomenon has also been described for human papillomavirus (HPV) vegetative genome replication, which occurs in G2-arrested cells; however, the precise timing of viral DNA replication during initial and stable replication phases has not been studied. We developed a new method to quantitate newly synthesized DNA levels and used this method in combination with cell cycle synchronization to show that viral DNA replication is initiated during S phase and is extended to G2 during initial amplification but follows the replication pattern of cellular DNA during S phase in the stable maintenance phase. E1 and E2 protein overexpression changes the replication time from S only to both the S and G2 phases in cells that stably maintain viral episomes. These data demonstrate that the active synthesis and replication of the HPV genome are extended into the G2 phase to amplify its copy number and the duration of HPV genome replication is controlled by the level of the viral replication proteins E1 and E2. Using the G2 phase for genome amplification may be an important adaptation that allows exploitation of changing cellular conditions during cell cycle progression. We also describe a new method to quantify newly synthesized viral DNA levels and discuss its benefits for HPV research. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: TR MT MU. Performed the experiments: TR LH MT MUJ. Analyzed the data: TR MU. Contributed reagents/materials/analysis tools: MUJ. Wrote the paper: TR MU. Competing Interests: Although, one of the authors is employed by a commercial company, this does not alter the authors’ adherence to PLOS ONE policies on sharing data and materials. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0131675 |