STE20/SPS1-related proline/alanine-rich kinase is involved in plasticity of GABA signaling function in a mouse model of acquired epilepsy

The intracellular concentration of chloride ([Cl(-)]i) determines the strength and polarity of GABA neurotransmission. STE20/SPS1-related proline/alanine-rich kinase (SPAK) is known as an indirect regulator of [Cl(-)]i for its activation of Na-K-2 Cl(-)co-transporters (NKCC) and inhibition of K-Cl(-...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 8; no. 9; p. e74614
Main Authors Yang, Libai, Cai, Xiaodong, Zhou, Jueqian, Chen, Shuda, Chen, Yishu, Chen, Ziyi, Wang, Qian, Fang, Ziyan, Zhou, Liemin
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 13.09.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The intracellular concentration of chloride ([Cl(-)]i) determines the strength and polarity of GABA neurotransmission. STE20/SPS1-related proline/alanine-rich kinase (SPAK) is known as an indirect regulator of [Cl(-)]i for its activation of Na-K-2 Cl(-)co-transporters (NKCC) and inhibition of K-Cl(-)co-transporters (KCC) in many organs. NKCC1 or KCC2 expression changes have been demonstrated previously in the hippocampal neurons of mice with pilocarpine-induced status epilepticus (PISE). However, it remains unclear whether SPAK modulates [Cl(-)]i via NKCC1 or KCC2 in the brain. Also, there are no data clearly characterizing SPAK expression in cortical or hippocampal neurons or confirming an association between SPAK and epilepsy. In the present study, we examined SPAK expression and co-expression with NKCC1 and KCC2 in the hippocampal neurons of mice with PISE, and we investigated alterations in SPAK expression in the hippocampus of such mice. Significant increases in SPAK mRNA and protein levels were detected during various stages of PISE in the PISE mice in comparison to levels in age-matched sham (control) and blank treatment (control) mice. SPAK and NKCC1 expression increased in vitro, while KCC2 was down-regulated in hippocampal neurons following hypoxic conditioning. However, SPAK overexpression did not influence the expression levels of NKCC1 or KCC2. Using co-immunoprecipitation, we determined that the intensity of interaction between SPAK and NKCC1 and between SPAK and KCC2 increased markedly after oxygen-deprivation, whereas SPAK overexpression strengthened the relationships. The [Cl(-)]i of hippocampal neurons changed in a corresponding manner under the different conditions. Our data suggests that SPAK is involved in the plasticity of GABA signaling function in acquired epilepsy via adjustment of [Cl(-)]i in hippocampal neurons.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: LZ. Performed the experiments: LY XC SC YC ZC QW ZF. Analyzed the data: JZ. Wrote the manuscript: LY XC.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0074614