Reliability and Validity of a Point-of-Care Sural Nerve Conduction Device for Identification of Diabetic Neuropathy

Confirmation of diabetic sensorimotor polyneuropathy (DSP) relies on standard nerve conduction studies (NCS) performed in specialized clinics. We explored the utility of a point-of-care device (POCD) for DSP detection by nontechnical personnel and a validation of diagnostic thresholds with those obs...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 1; p. e86515
Main Authors Lee, Justin A., Halpern, Elise M., Lovblom, Leif E., Yeung, Emily, Bril, Vera, Perkins, Bruce A.
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 22.01.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Confirmation of diabetic sensorimotor polyneuropathy (DSP) relies on standard nerve conduction studies (NCS) performed in specialized clinics. We explored the utility of a point-of-care device (POCD) for DSP detection by nontechnical personnel and a validation of diagnostic thresholds with those observed in a normative database. 44 subjects with type 1 and type 2 diabetes underwent standard NCS (reference method). Two nontechnical examiners measured sural nerve amplitude potential (SNAP) and conduction velocity (SNCV) using the POCD. Reliability was determined by intraclass correlation coefficients (ICC [2], [1]). Validity was determined by Bland-Altman analysis and receiver operating characteristic curves. The 44 subjects (50% female) with mean age 56 ± 18 years had mean SNAP and SNCV of 8.0 ± 8.6 µV and 41.5 ± 8.2 m/s using standard NCS and 8.0 ± 8.2 µV and 49.9 ± 11.1 m/s using the POCD. Intrarater reproducibility ICC values were 0.97 for SNAP and 0.94 for SNCV while interrater reproducibility values were 0.83 and 0.79, respectively. Mean bias of the POCD was -0.1 ± 3.6 µV for SNAP and +8.4 ± 6.4 m/s for SNCV. A SNAP of ≤6 µV had 88% sensitivity and 94% specificity for identifying age-and height-standardized reference NCS values, while a SNCV of ≤48 m/s had 94% sensitivity and 82% specificity [corrected].. Abnormality in one or more of these thresholds was associated with 95% sensitivity and 71% specificity for identification of DSP according to electrophysiological criteria. The POCD demonstrated excellent reliability and acceptable accuracy. Threshold values for DSP identification validated those of published POCD normative values. We emphasize the presence of measurement bias--particularly for SNCV--that requires adjustment of threshold values to reflect those of standard NCS.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have read the journal's policy and have the following conflicts: Bruce A. Perkins reports serving as an advisor to Neurometrix Inc. The remaining authors have declared that no competing interests exist. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.
Conceived and designed the experiments: VB BAP. Performed the experiments: EMH LEL EY. Analyzed the data: JAL LEL BAP. Contributed reagents/materials/analysis tools: N/A. Wrote the paper: JAL EMH. Reviewed the manuscript for scholarly content and accuracy: JAL EMH LEL EY VB BAP.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0086515