Maximum soil organic carbon storage in Midwest U.S. cropping systems when crops are optimally nitrogen-fertilized
Nitrogen fertilization is critical to optimize short-term crop yield, but its long-term effect on soil organic C (SOC) is uncertain. Here, we clarify the impact of N fertilization on SOC in typical maize-based (Zea mays L.) Midwest U.S. cropping systems by accounting for site-to-site variability in...
Saved in:
Published in | PloS one Vol. 12; no. 3; p. e0172293 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
01.03.2017
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Nitrogen fertilization is critical to optimize short-term crop yield, but its long-term effect on soil organic C (SOC) is uncertain. Here, we clarify the impact of N fertilization on SOC in typical maize-based (Zea mays L.) Midwest U.S. cropping systems by accounting for site-to-site variability in maize yield response to N fertilization. Within continuous maize and maize-soybean [Glycine max (L.) Merr.] systems at four Iowa locations, we evaluated changes in surface SOC over 14 to 16 years across a range of N fertilizer rates empirically determined to be insufficient, optimum, or excessive for maximum maize yield. Soil organic C balances were negative where no N was applied but neutral (maize-soybean) or positive (continuous maize) at the agronomic optimum N rate (AONR). For continuous maize, the rate of SOC storage increased with increasing N rate, reaching a maximum at the AONR and decreasing above the AONR. Greater SOC storage in the optimally fertilized continuous maize system than in the optimally fertilized maize-soybean system was attributed to greater crop residue production and greater SOC storage efficiency in the continuous maize system. Mean annual crop residue production at the AONR was 22% greater in the continuous maize system than in the maize-soybean system and the rate of SOC storage per unit residue C input was 58% greater in the monocrop system. Our results demonstrate that agronomic optimum N fertilization is critical to maintain or increase SOC of Midwest U.S. cropland. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Conceptualization: HJP MJH FEM DCO JES JS MJC.Data curation: HJP DWB JES.Formal analysis: HJP FEM JES MJC.Funding acquisition: DCO JES JS MJC.Investigation: HJP DWB JES MJC.Methodology: HJP FEM JES MJC.Project administration: JES MJC.Resources: JES MJC.Supervision: MJH JES MJC.Validation: HJP.Visualization: HJP FEM JES MJC.Writing – original draft: HJP MJC.Writing – review & editing: HJP DWB MJH FEM DCO JES JS MJC. Competing Interests: The authors have declared that no competing interests exist. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0172293 |