Screening for AMPA receptor auxiliary subunit specific modulators

AMPA receptors (AMPAR) are ligand gated ion channels critical for synaptic transmission and plasticity. Their dysfunction is implicated in a variety of psychiatric and neurological diseases ranging from major depressive disorder to amyotrophic lateral sclerosis. Attempting to potentiate or depress A...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 12; no. 3; p. e0174742
Main Authors Azumaya, Caleigh M., Days, Emily L., Vinson, Paige N., Stauffer, Shaun, Sulikowski, Gary, Weaver, C. David, Nakagawa, Terunaga
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 30.03.2017
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:AMPA receptors (AMPAR) are ligand gated ion channels critical for synaptic transmission and plasticity. Their dysfunction is implicated in a variety of psychiatric and neurological diseases ranging from major depressive disorder to amyotrophic lateral sclerosis. Attempting to potentiate or depress AMPAR activity is an inherently difficult balancing act between effective treatments and debilitating side effects. A newly explored strategy to target subsets of AMPARs in the central nervous system is to identify compounds that affect specific AMPAR-auxiliary subunit complexes. This exploits diverse spatio-temporal expression patterns of known AMPAR auxiliary subunits, providing means for designing brain region-selective compounds. Here we report a high-throughput screening-based pipeline that can identify compounds that are selective for GluA2-CNIH3 and GluA2-stargazin complexes. These compounds will help us build upon the growing library of AMPAR-auxiliary subunit specific inhibitors, which have thus far all been targeted to TARP γ-8. We used a cell-based assay combined with a voltage-sensitive dye (VSD) to identify changes in glutamate-gated cation flow across the membranes of HEK cells co-expressing GluA2 and an auxiliary subunit. We then used a calcium flux assay to further validate hits picked from the VSD assay. VU0612951 and VU0627849 are candidate compounds from the initial screen that were identified as negative and positive allosteric modulators (NAM and PAM), respectively. They both have lower IC50/EC50s on complexes containing stargazin and CNIH3 than GSG1L or the AMPAR alone. We have also identified a candidate compound, VU0539491, that has NAM activity in GluA2(R)-CNIH3 and GluA2(Q) complexes and PAM activity in GluA2(Q)-GSG1L complexes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceptualization: TN CDW ED CMA.Data curation: CMA ED TN.Formal analysis: CMA ED TN.Funding acquisition: TN CDW.Investigation: CMA ED TN.Methodology: ED TN PNV CDW CMA.Project administration: CMA ED TN.Resources: CMA ED PNV SS GS CDW TN.Supervision: TN.Validation: CMA ED PNV CDW TN.Visualization: CMA ED TN CDW SS PNV GS.Writing – original draft: CMA TN.Writing – review & editing: CMA ED PNV CDW SS GS TN.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0174742