Decorin protein core affects the global gene expression profile of the tumor microenvironment in a triple-negative orthotopic breast carcinoma xenograft model
Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal...
Saved in:
Published in | PloS one Vol. 7; no. 9; p. e45559 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
19.09.2012
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal attenuation, growth arrest, and angiostasis. We thus sought to evaluate the tumoricidal benefits of systemic decorin on a triple-negative orthotopic breast carcinoma xenograft model. To this end, we employed a novel high-density mixed expression array capable of differentiating and simultaneously measuring gene signatures of both Mus musculus (stromal) and Homo sapiens (epithelial) tissue origins. We found that decorin protein core modulated the differential expression of 374 genes within the stromal compartment of the tumor xenograft. Further, our top gene ontology classes strongly suggests an unexpected and preferential role for decorin protein core to inhibit genes necessary for immunomodulatory responses while simultaneously inducing expression of those possessing cellular adhesion and tumor suppressive gene properties. Rigorous verification of the top scoring candidates led to the discovery of three genes heretofore unlinked to malignant breast cancer that were reproducibly found to be induced in several models of tumor stroma. Collectively, our data provide highly novel and unexpected stromal gene signatures as a direct function of systemic administration of decorin protein core and reveals a fundamental basis of action for decorin to modulate the tumor stroma as a biological mechanism for the ascribed anti-tumorigenic properties. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conceived and designed the experiments: RVI SB TN. Performed the experiments: SB TN. Analyzed the data: RVI SB TN GP RV BE LS Z-XW. Contributed reagents/materials/analysis tools: RTO LAI SCP Z-XW. Wrote the paper: RVI SB TN. Competing Interests: RTO works for LifeCell Co. and has provided the recombinant decorin used for the studies. LAI works for Roche-NibleGen Co. and has provided expertise in performing the microarray data. There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0045559 |