Role of peptidergic nerve terminals in the skin: reversal of thermal sensation by calcitonin gene-related peptide in TRPV1-depleted neuropathy

To investigate the contribution of peptidergic intraepidermal nerve fibers (IENFs) to nociceptive responses after depletion of the thermal-sensitive receptor, transient receptor potential vanilloid subtype 1 (TRPV1), we took advantage of a resiniferatoxin (RTX)-induced neuropathy which specifically...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 7; no. 11; p. e50805
Main Authors Hsieh, Yu-Lin, Lin, Chih-Lung, Chiang, Hao, Fu, Yaw-Syan, Lue, June-Horng, Hsieh, Sung-Tsang
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 27.11.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:To investigate the contribution of peptidergic intraepidermal nerve fibers (IENFs) to nociceptive responses after depletion of the thermal-sensitive receptor, transient receptor potential vanilloid subtype 1 (TRPV1), we took advantage of a resiniferatoxin (RTX)-induced neuropathy which specifically affected small-diameter dorsal root ganglion (DRG) neurons and their corresponding nerve terminals in the skin. Thermal hypoalgesia (p<0.001) developed from RTX-treatment day 7 (RTXd7) and became normalized from RTXd56 to RTXd84. Substance P (SP)(+) and TRPV1(+) neurons were completely depleted (p = 0.0001 and p<0.0001, respectively), but RTX had a relatively minor effect on calcitonin gene-related peptide (CGRP)(+) neurons (p = 0.029). Accordingly, SP(+) (p<0.0001) and TRPV1(+) (p = 0.0008) IENFs were permanently depleted, but CGRP(+) IENFs (p = 0.012) were only transiently reduced and had recovered by RTXd84 (p = 0.83). The different effects of RTX on peptidergic neurons were attributed to the higher co-localization ratio of TRPV1/SP than of TRPV1/CGRP (p = 0.029). Thermal hypoalgesia (p = 0.0018) reappeared with an intraplantar injection of botulinum toxin type A (botox), and the temporal course of withdrawal latencies in the hot-plate test paralleled the innervation of CGRP(+) IENFs (p = 0.0003) and CGRP contents in skin (p = 0.01). In summary, this study demonstrated the preferential effects of RTX on depletion of SP(+) IENFs which caused thermal hypoalgesia. In contrast, the skin was reinnervated by CGRP(+) IENFs, which resulted in a normalization of nociceptive functions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: STH. Performed the experiments: YLH CLL HC. Analyzed the data: YLH JHL STH. Contributed reagents/materials/analysis tools: STH YLH CLL YSF. Wrote the paper: YLH CLL JHL STH.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0050805