Volumetric Electromagnetic Phase-Shift Spectroscopy of Brain Edema and Hematoma
Motivated by the need of poor and rural Mexico, where the population has limited access to advanced medical technology and services, we have developed a new paradigm for medical diagnostic based on the technology of "Volumetric Electromagnetic Phase Shift Spectroscopy" (VEPS), as an inexpe...
Saved in:
Published in | PloS one Vol. 8; no. 5; p. e63223 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Public Library of Science
14.05.2013
Public Library of Science (PLoS) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Motivated by the need of poor and rural Mexico, where the population has limited access to advanced medical technology and services, we have developed a new paradigm for medical diagnostic based on the technology of "Volumetric Electromagnetic Phase Shift Spectroscopy" (VEPS), as an inexpensive partial substitute to medical imaging. VEPS, can detect changes in tissue properties inside the body through non-contact, multi-frequency electromagnetic measurements from the exterior of the body, and thereby provide rapid and inexpensive diagnostics in a way that is amenable for use in economically disadvantaged parts of the world. We describe the technology and report results from a limited pilot study with 46 healthy volunteers and eight patients with CT radiology confirmed brain edema and brain hematoma. Data analysis with a non-parametric statistical Mann-Whitney U test, shows that in the frequency range of from 26 MHz to 39 MHz, VEPS can distinguish non-invasively and without contact, with a statistical significance of p<0.05, between healthy subjects and those with a medical conditions in the brain. In the frequency range of between 153 MHz to 166 MHz it can distinguish with a statistical significance of p<0.05 between subjects with brain edema and those with a hematoma in the brain. A classifier build from measurements in these two frequency ranges can provide instantaneous diagnostic of the medical condition of the brain of a patient, from a single set of measurements. While this is a small-scale pilot study, it illustrates the potential of VEPS to change the paradigm of medical diagnostic of brain injury through a VEPS classifier-based technology. Obviously substantially larger-scale studies are needed to verify and expand on the findings in this small pilot study. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Competing Interests: Cesar Gonzalez and Boris Rubinsky are the co-inventor of the following VEPS technology issued patents: "Volumetric induction phase shift detection system for determining tissue water content properties" United States (US) patent number 7,638,341 Dec 29, 2009; "Volumetric Induction phase shift system for determining tissue water content." US Patent 07910374, March 31 2011; "Volumetric induction phase shift detection system for determining tissue water content properties" US Patent number 8,101,421 January 24, 2012; "Volumetric induction phase shift detection system for determining tissue water content properties" US Patent number 8,361,391, January 29, 2013. These patents are assigned to the University of California (UC), Berkeley and were licensed to "Cerebrotech" a company in which Rubinsky, Gonzalez and UC Berkeley have a commercial interest through shares in that company. There are no further patents, products in development or marketed products to declare. The authors confirm that this does not alter their adherence to all the PLOS ONE policies on sharing data and materials. The study reported here was performed without any input, support and any involvement from Cerebrotech. Conceived and designed the experiments: CAG BR. Performed the experiments: JAV AM FG BV. Analyzed the data: CAG MAP JS SC BR. Contributed reagents/materials/analysis tools: MAP SMP JS NHM. Wrote the paper: CAG BR NHM. |
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0063223 |