Percolation centrality: quantifying graph-theoretic impact of nodes during percolation in networks

A number of centrality measures are available to determine the relative importance of a node in a complex network, and betweenness is prominent among them. However, the existing centrality measures are not adequate in network percolation scenarios (such as during infection transmission in a social n...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 8; no. 1; p. e53095
Main Authors Piraveenan, Mahendra, Prokopenko, Mikhail, Hossain, Liaquat
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 22.01.2013
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A number of centrality measures are available to determine the relative importance of a node in a complex network, and betweenness is prominent among them. However, the existing centrality measures are not adequate in network percolation scenarios (such as during infection transmission in a social network of individuals, spreading of computer viruses on computer networks, or transmission of disease over a network of towns) because they do not account for the changing percolation states of individual nodes. We propose a new measure, percolation centrality, that quantifies relative impact of nodes based on their topological connectivity, as well as their percolation states. The measure can be extended to include random walk based definitions, and its computational complexity is shown to be of the same order as that of betweenness centrality. We demonstrate the usage of percolation centrality by applying it to a canonical network as well as simulated and real world scale-free and random networks.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: M. Piraveenan M. Prokopenko LH. Performed the experiments: M. Piraveenan. Analyzed the data: M. Piraveenan M. Prokopenko. Wrote the paper: M. Piraveenan M. Prokopenko LH.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0053095