Simultaneously Uncovering the Patterns of Brain Regions Involved in Different Story Reading Subprocesses

Story understanding involves many perceptual and cognitive subprocesses, from perceiving individual words, to parsing sentences, to understanding the relationships among the story characters. We present an integrated computational model of reading that incorporates these and additional subprocesses,...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 9; no. 11; p. e112575
Main Authors Wehbe, Leila, Murphy, Brian, Talukdar, Partha, Fyshe, Alona, Ramdas, Aaditya, Mitchell, Tom
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 26.11.2014
Public Library of Science (PLoS)
Subjects
Online AccessGet full text
ISSN1932-6203
1932-6203
DOI10.1371/journal.pone.0112575

Cover

More Information
Summary:Story understanding involves many perceptual and cognitive subprocesses, from perceiving individual words, to parsing sentences, to understanding the relationships among the story characters. We present an integrated computational model of reading that incorporates these and additional subprocesses, simultaneously discovering their fMRI signatures. Our model predicts the fMRI activity associated with reading arbitrary text passages, well enough to distinguish which of two story segments is being read with 74% accuracy. This approach is the first to simultaneously track diverse reading subprocesses during complex story processing and predict the detailed neural representation of diverse story features, ranging from visual word properties to the mention of different story characters and different actions they perform. We construct brain representation maps that replicate many results from a wide range of classical studies that focus each on one aspect of language processing and offer new insights on which type of information is processed by different areas involved in language processing. Additionally, this approach is promising for studying individual differences: it can be used to create single subject maps that may potentially be used to measure reading comprehension and diagnose reading disorders.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: LW AF TM. Performed the experiments: LW. Analyzed the data: LW AR. Wrote the paper: LW TM. Contributed annotations for the text: BM PT LW TM. Contributed experimental code: LW AF. Participated in discussions about analysis methods: LW BM PT AF AR TM.
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0112575