Stacking interactions between carbohydrate and protein quantified by combination of theoretical and experimental methods

Carbohydrate-receptor interactions are an integral part of biological events. They play an important role in many cellular processes, such as cell-cell adhesion, cell differentiation and in-cell signaling. Carbohydrates can interact with a receptor by using several types of intermolecular interactio...

Full description

Saved in:
Bibliographic Details
Published inPloS one Vol. 7; no. 10; p. e46032
Main Authors Wimmerová, Michaela, Kozmon, Stanislav, Nečasová, Ivona, Mishra, Sushil Kumar, Komárek, Jan, Koča, Jaroslav
Format Journal Article
LanguageEnglish
Published United States Public Library of Science 08.10.2012
Public Library of Science (PLoS)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Carbohydrate-receptor interactions are an integral part of biological events. They play an important role in many cellular processes, such as cell-cell adhesion, cell differentiation and in-cell signaling. Carbohydrates can interact with a receptor by using several types of intermolecular interactions. One of the most important is the interaction of a carbohydrate's apolar part with aromatic amino acid residues, known as dispersion interaction or CH/π interaction. In the study presented here, we attempted for the first time to quantify how the CH/π interaction contributes to a more general carbohydrate-protein interaction. We used a combined experimental approach, creating single and double point mutants with high level computational methods, and applied both to Ralstonia solanacearum (RSL) lectin complexes with α-L-Me-fucoside. Experimentally measured binding affinities were compared with computed carbohydrate-aromatic amino acid residue interaction energies. Experimental binding affinities for the RSL wild type, phenylalanine and alanine mutants were -8.5, -7.1 and -4.1 kcal x mol(-1), respectively. These affinities agree with the computed dispersion interaction energy between carbohydrate and aromatic amino acid residues for RSL wild type and phenylalanine, with values -8.8, -7.9 kcal x mol(-1), excluding the alanine mutant where the interaction energy was -0.9 kcal x mol(-1). Molecular dynamics simulations show that discrepancy can be caused by creation of a new hydrogen bond between the α-L-Me-fucoside and RSL. Observed results suggest that in this and similar cases the carbohydrate-receptor interaction can be driven mainly by a dispersion interaction.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Competing Interests: The authors have declared that no competing interests exist.
Conceived and designed the experiments: MW SK J. Koča. Performed the experiments: MW SK. Analyzed the data: MW SK. Contributed reagents/materials/analysis tools: IN SKM J. Komárek. Wrote the paper: MW SK J. Koča
ISSN:1932-6203
1932-6203
DOI:10.1371/journal.pone.0046032